Джудиа Перл

Думай «почему?». Причина и следствие как ключ к мышлению


Скачать книгу

цены. Но теперь вы размышляете о намеренном вмешательстве, после которого установится новая цена, независимо от условий на рынке. Результат может сильно отличаться от предыдущего, когда покупатель не мог купить товар по более выгодной цене в других местах. Если бы у вас были данные об условиях на рынке в других ситуациях, вероятно, вы смогли бы предсказать все это лучше, но какие данные нужны? И как это выяснить? Наука о причинном выводе позволяет нам отвечать именно на эти вопросы.

      Непосредственный способ предсказать результат интервенции – провести с ней эксперимент в тщательно контролируемых условиях. Компании, работающие с большими данными, такие как «Фейсбук», знают об этом и постоянно ставят эксперименты, чтобы посмотреть, что случится, если по-другому разместить элементы на экране или показать клиенту новую подсказку (либо даже новую цену).

      Еще интереснее тот факт, что успешные предсказания об эффекте интервенции иногда можно сделать даже без эксперимента, хотя это не так широко известно, и даже в Кремниевой долине. Предположим, менеджер по продажам создает модель потребительского поведения и учитывает в ней ситуацию на рынке. Если данных обо всех факторах не имеется, вероятно, получится подставить достаточно суррогатных ключей и сделать прогноз. Сильная и точная причинная модель позволит использовать данные с первого уровня (наблюдения), чтобы ответить на запросы со второго уровня (об интервенции). Без причинной модели нельзя перейти с первой перекладины Лестницы на вторую. Вот почему системы глубинного обучения (если в них используются только данные с первой перекладины и нет причинной модели) никогда не смогут отвечать на вопросы об интервенции, по определению нарушающие правила среды, в которой обучалась машина.

      Как иллюстрируют все эти примеры, главный вопрос на второй перекладине Лестницы Причинности – «Что, если мы…?». Что произойдет, если мы изменим среду? Можно написать запрос P (нить | do (зубная паста)), чтобы узнать, какова вероятность продать зубную нить по определенной цене, если мы будем продавать зубную пасту по другой цене.

      Еще один популярный вопрос на этом уровне причинности – «Как?» Это родственник вопроса «Что, если мы…?». Скажем, менеджер говорит нам, что на складе слишком много зубной пасты. Он спрашивает: «Как нам ее продать?», т. е. какую цену лучше на нее назначить. И снова вопрос относится к интервенции, которую нужно совершить в уме, прежде чем решить, стоит ли осуществлять ее в реальной жизни и как это осуществить. Здесь требуется модель причинности.

      В повседневной жизни мы постоянно совершаем интервенции, хотя обычно не называем их таким замысловатым термином. Предположим, принимая аспирин, чтобы избавиться от головной боли, мы вмешиваемся в одну переменную (количество аспирина в нашем организме), чтобы повлиять на другую (состояние головной боли). Если наш причинный взгляд на аспирин верен, то переменная результата отреагирует, изменившись с «головной