идеи во время Второй мировой войны, предугадав алгоритм работы машины «Энигма» фашисткой Германии, по некоторым оценкам, это приблизило конец войны на 2—4 года.
После войны Тьюринг и Джон фон Нейман создали первый программируемый компьютер «Эниак», на основе наработок Тьюринга, хоть он, к сожалению, не дожил до этих дней. Но он изменил наш мир, его называют самой влиятельной фигурой в кибернетическом мире, все его идеи до сих пор действуют в любой вычислительной машине, но они возникли в результате мысли о машине Тьюринга, а этому уже нужно сказать спасибо Гильберту и его вопросам о разрешимости математики, поэтому дешифровщики Тьюринга и вся компьютерная индустрия – плоды удивительных парадоксов в математике.
Поэтому в фундаменте математики по сей день имеется слабое место, из-за которого невозможно знать всё наверняка и будут утверждения, которые невозможно доказать, это обстоятельство могло бы свести математиков с ума и привести к краху дисциплины, но на удивление попытки решить эту проблему, изменили наше представление о бесконечности, переломили ход мировой войны и помогли создать устройства, которые способствуют развитию технологий сегодня.
И хотя это так, это по сей день служит для всех живущих и мыслящих ещё более лучшим знаком и намёком, а скорее утверждением, что нам нужно идти дальше, стараться развиваться, даже несмотря на то, что идеал недостижим…
Использованная литература
1. Арива С. Б. Исследования в области ингенциальных чисел. Все науки. – 2022. – №1. – 33—38 с.
2. Алиев И. Х. Первоначальные математические свойства ингенциальных чисел. Все науки. – 2022. – №1. – 38—46 с.
3. Богдан А. М. Исследование проблем Гильберта. Все науки. – 2022. – №2. – 90—95 с.
4. Арипова С. Б. Применение математического аппарата в физике резонансных ядерных реакций и гидрологии. Все науки. – 2022. – №2. – 85—90 с.
5. Нематов И., Алиев И. Х. Прямое применение импликации и эквиваленции. Все науки. – 2022. – №7. – 27—41 с.
6. Мендельсон Э. Введение в математическую логику. – М. Наука, 1971.
7. Эдельман С. Л. Математическая логика. – М.: Высшая школа, 1975. – 176 с.
8. Акимов, О. Е. Дискретная математика. Логика, группы, графы / О. Е. Акимов. – М.: Бином. Лаборатория знаний, 2009. – 376 c.
9. Акимов, О. Е. Дискретная математика. Логика, группы, графы / О. Е. Акимов. – М.: Бином. Лаборатория знаний, 2003. – 376 c.
10. Андерсон, Дж. Дискретная математика и комбинаторика / Дж. Андерсон. – М.: Диалектика, 2019. – 960 c.
11. Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: Учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. – СПб.: Лань, 2010. – 368 c.
12. Бабичева, И. В. Дискретная математика. Контролирующие материалы к тестированию: Учебное пособие / И. В. Бабичева. – СПб.: Лань, 2013. – 160 c.
13. Баврин, И. И. Дискретная математика для педагогических вузов: Учебник и задачник для прикладного