Андрей Савельев

Завет «темных веков». Термины и концепты Освальда Шпенглера


Скачать книгу

align="center">

      4

      И все-таки есть сомнение, что это так. Кажется, это утверждение относится к парадоксальным: его нельзя ни доказать, ни опровергнут. Бесконечная линия всегда проскользнет сквозь «игольное ушко» произвольно уменьшенной ε-окрестности произвольно выбранной точки. Но «ответным ходом» эта окрестность может быть уменьшена, чтобы линия не проходила через нее.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAIoAyADAREAAhEBAxEB/8QAHQABAAEFAQEBAAAAAAAAAAAAAAcBBAUGCAIDCf/EAGAQAAEDAwEEBQUHDwgGCAYCAwEAAgMEBREGBxIhMQgTQVFhFCJxkdEYMleBlaGxCRUWFyM2OEJYdISWsrTBJDNSYnJzgrMmNEODkqIlKDVEU1Zjk0VkdqPh8FRmJ8Lx/8QAFwEBAQEBAAAAAAAAAAAAAAAAAAECA//EAB4RAQEBAQEBAQEBAQEAAAAAAAABEUExIVECYRJx/9oADAMBAAIRAxEAPwD9U0BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBTKAgqgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIPJOPWgi1nSAtFTt2h2X09ur33M0Etwlr3x7lO1rDjdaT78k93JXBKeeBUEaa+2wnTet7JoqxWv7INWXSGSr8k68Qx0lKzAdPK4g4BJADebjnHJVHjZJtwo9pd51Pp2qts1g1XpqpbT3O1VDw/dDhlksbxwfG4cQR6EVJwOVAQVQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBQjgg5y1QMdOzRf/ANG1f+cVUdFvOGO9BUVyVsgqZbx0+dtE1W50j6C0UNJTF34sRBcQPDJV4LyvmdZvqjduiox1cd40XIa7d5PMUpMZd4hODqsKCjjj1oOY9TdOCDTWpLtaHbKtoFcbfVSUvlVJaHPhm3HFu+x2OLTjIKowV1+qJWixUEtdctlu0C30UWOsqKq0mONmTgZceAySB8aH1dN6f1K9rXN2RbR3NcA5rhZXkEEZB5IK+77p/gg2kfIr/YmB7vum+CDaR8iv9iB7vun+CDaR8iv9iYHu+6f4INpHyK/2Jge77p/gg2kfIr/YmB7vun+CDaR8iv8AYge77p/gg2kfIr/YmB7vum+CDaR8iv8AYmB7vum+CDaR8iv9iB7vun+CDaR8iv8AYmB7vun+CDaR8iv9iYHu+6f4INpHyK/2IHu+6f4INpHyK/2IHu+6b4INpHyK/wBiYHu+6b4INpHyK/2IHu+6b4INpHyK/wBiYHu+6f4INpHyK/2IHu+6f4INpHyK/wBiB7vun+CDaR8iv9iYHu+6b4INpHyK/wBiB7vum+CDaR8iv9iB7vun+CDaR8iv9iYHu+6f4INpHyK/2Jge77pvgg2kfIj/AGIHu+6f4INpHyK/2IHu+6b4INpHyK/2IHu+6f4INpHyK/2Jge77pvgg2kfIr/Yge77p/gg2kfIr/YmB7vun+CDaR8iv9iYHu+6f4INpHyK/2Jge77p/gg2kfIr/AGJge77p/gg2kfIr/YmB7vum+CDaR8iv9iB7vum+CDaR8iv9iYHu+6b4INpHyK/2IHu+6b4INpHyK/2IHu+6b4INpHyK/wBiB7vum+CDaR8iv9iB7vum+CDaR8iv9iB7vum+CDaR8iv9iB7vun+CDaR8iv8AYmB7vum+CDaR8iv9iYHu+6b4INpHyK/2IHu+6f4INpHyK/2Jge77p/gg2kfIr/YmB7vum+CDaR8iv9iYHu+6f4INpHyK/wBiB7vun+CDaR8iv9iYHu+6b4INpHyK/wBiB7vun+CDaR8iv9iYHu+6f4INpHyK/wBiYHu+6b4INpHyK/2Jge77p/gg2kfIr/Yge77pvgg2kfIr/Yge77pvgg2kfIr/AGIHu+6f4INpHyK/2Jge77pvgg2kfIr/AGIHu+6f4INpHyK/2IHu+6f4INpHyK/2Jge77p/gg2kfIr/YmB7vun+CDaR8iv8AYmB7vum+CDaR8iv9iB7vun+CDaR8iv8AYmB7vun+CDaR8iv9iYHu+6f4INpHyK/2Jge77p/gg2kfIr/Yge77p/gg2kfIr/YmB7vum+CDaR8iv9iB7vun+CDaR8iv9iYHu+6f4INpHyK/2IHu+6b4INpHyK/2Jge77pvgg2kfIr/Yge77pvgg2kfIr/YmB7vum+CDaR8iv9iB7vum+CDaR8iv9iB7vun+CDaR8iv9iYHu+6f4INpHyK/2Jge77p/gg2kfIr/Yge77p/gg2kfIr/YmB7vum+CDaR8iv9iB7vum+CDaR8iv9iDwPqgFITgbIto5d3Cyvz9CD5XT6oZbLHSOqrlsr2gW6nbzkrLWYWj43YTBvHRw6YmmukrerxbbHZrta5bbTR1Tn3JjWiRjyQC3B48QUE/hQVQEBAQeXHgg5u1nbtWx9Law6wpdFXO4aYttjls81bA+PfdJJIXb7WFwywA8Tw9CvESNtm1br7TFPpx2hdIxaofV3KKG5CacRmkpSfPkAJ4kKK03U2zi76E6RDdqdjtc15tt5tQtN8tdDumpY9jt6KojDiA7GS1wyOxVDZFsw1JcduesdrOrqVltkuNLFa7HaXuD56OjYcudKRwD3uycAnASqn4DCgoQgbviUEEdOAEdGPWWCf8Aun73CrBMmmBnTlrJJP8AJYu3+o1QZPd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60Dd8T60DdHefWgbo7z60FDgdpPoQYy8antGn43SXO6UlvY1u851VUsjwO/ziEEGa36few3QrqiKp1vT3KshHGktbXTyE9w4BpPxqjmzaL9V5tjKKri0Nousmq+Ihq7zL1bAP6RjGfVvKLlc5bdOmzttud0ZQO1nPaKWppIqh0FpibTgB7Ad3PEkce9XxZNc4XLWOodQTOkuN9utfI/3xqK+Z4PxF2PmUax+iv1LZrxrG79ZneOk7eePb92nV451+kQ4BQVQEBAQUQU6tpOS0Z9CAWg8wD8SAWA8wCgBoHIYQekBAQQR04PwY9Zfon73CrBMemPvctf5rD+w1QZRAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBTKBlBZXK90FoidJW1kFIxo3i6aQNAHfxQQptU6bmyHZDU1FHedVw1Vygx1lvtkZqZ2kjIBa3lkEc1cPXM+u/qvlhow6LSOia25PzwqbnO2KPH9ged86i5XLO1X6oltn2lVkxpdQDSduJO5Q2ZgZujxkPnk/Gqv/MQ7tSu92vQ0/WXa6V11nrraKmSSuqXzlzuteM+eT3JVjV7dY6yu6vq43CJ0jY88hknCi2xkqvRlRQWN9dUcOsf1UTBzLuPsRNS30hNCufqDS87SGmotdJE7AwP5lhC1WJcYW07MmOgAwAW8S84GMBMNd0/U76D62bVtQ02chmkbbx/3s6VH6CrKiAgICAgICAgICAgIIH6cH4Mesv0P97hVgmTTH3uWv81h/YaoMogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIKICCheAeJCDF6h1VZ9I259ffLrR2iiZzqK6dsLPW4hBz9tD+qHbEdn4MZ1WL7WYyKazwumJ/x4DPnVMtc667+q8U7WTfYZoGepazA6+91PVjj27se99Ki452119Ut226wdMyjvVJpmkcfNitdKBI3/enzlWv+X6l7DNM23VmxvRtzvlHHd7lWWunnqKuuHWyyyEbxc5x7c4PxJa545X+qQdFTR9Js6rNolgtjqDVJuFOyrfFIQyqa8lpL2nhvDAwU9WXH5dVNvnpKuWlmjdHPG8sfG4YIPco6az0Ol3i1VFU5hI8mY5g73OPD6FU36lTWOhG1OjNB1L270jbdDE5uOABqJd7KtZlbFp7RkcEFIBGHDyiLzc8PfBWMarqrSkT22q3ua156yaqfHy96SB9KESnt103HPJYHmMYiprfh2B2xtGFRiqKxBsTmBoaCxxJPIFEdHdB6mFJt11TEBjGkLXy/vZ1mtR3WsqICAgICAgICAgICAggjpwfgx6y/RP3uFWCY9Mfe5a/zWH9hqgyiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgplA3h6fQgtq650tth66rqIqWL+nPI1jfWSEEMbUumdsi2SQON41dSVVXgllFbXComfjsAbw+dXBynrr6r7QRF8Wj9A1NYD72qu1UIgPHqwCf+ZRcr4aq6Tm1zaR0O63ajbL6/TF5bqH63w0lkgaGeTlozkvDiSD2qpn364Hvurda7VKmV2oL/AHK9iNxdIa6oc9jD2nd5Z+JG/kZ21bJ23W3aae1jovLqSWZ/VjdBLXAD5iUxm/0w2tKSloJKiz2VrHRUu4ysmj84TPPvQPBqLP2sY3QtRLWGlaHb7GsEhP4rnYOPUmLr979hNF9btjujab/wrTTs9TEvrnGidNazNvvR71BTHi4PhkZ/aa/ISD8tNvOzVkmmYta2+EOnpnhlbgcJI3cGv4doPD0LVnV/m8a1areyayWYjiKh8Ic0NzgAOJx4clDqbtR2OOXZ5aCGbr4bU2VoPLIqZMFaZZC02dkEcO6zcYZIjw48cjPxqoxN1twq9YvYDuupKRzHbwyS5xz9AUVLG2S1CWOFwZvdXb6Fwa7nwaCURr1JQtjIG7+I73wyqJq6GrDH0g9WA8SdIWv/ADZ1itO3llRAQEBAQEBAQEBAQUyggjpwn/qx6y/RP3uFWeiZNMfe5a/zWH9hqgyiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICCiChOOwoLK6XugslOZ7hWU9DCP8AaVMrWN9ZKCNNV9J7QmmNL3TUMVfUX+zWxz2VlbYaV9bDA9uMsfIzLWkZHM8Mq4OL9ffVdqlj6kaM0G11N7yCsvU5w92M53YyCPQi4gLWn1QPpAaphp5YtSxWSkrWyPjp7VQxjzWnB88je+dFyI4rp9oW1Fr6jVerb1c4yWPMVVWySsDXZ47hOByVTZPH2ptkkc2zK1Vj2GI/XqSJxaB50RbujJ+dM+G/Vb3s6g+yOzWaCm3IfI4amrcz3zsg7jSezI4pib8d0bMNHU1s6BUlAxo3Yry6cDifO3h2FWepfrlnWGzam0bri+CnhxR3WnbWQt4AMeTuyD15KYa+G2y4nSOhdIWS0O6q+VcL27sXvoqf8YjuJ7+7KVZN+sDs82b07LXUb0e/I+COV7ng73viTlJEtbHpvTdPWvkqmtGKmrkIOPfNAw3x5Ij9fdlkPk+zvTkeMblBCMf4Vm+rGC2+Uwq9nVXC4Za+VgIxz5qz0rhbS9jo7jpBtFWwR1VJIyamnhk5OaMghw7Ctsub6Wxy6Q2lP0m/rCy3SySUxeOdO7HVH53epZ8+Nc1PFxoXT6Pt7MNEgs7uB5HE71WXq1UpNNRO3AXOfETjju8QqMWyhEurtTTE+c2YwtJHINA+figlfapQddAQCHN+s8Bac5cHBjcFBrVNRh9Tw4NEZ445lBKnRHj6rpG6tYAGgaPtfAf3s6xWp47UWVEBAQEBAQEBAQEHl2eGDhByrqvR3S2n1TeJdP640PTWGSrldQQVdve6WOAuPVteccSBjKoh7pH6U6T1BsdvlRrzWWjrlpVklKa2ktlC+Ookb5RHjccRw87dQ+O+dL/e5a/zSL9hqgyiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIKE4QU3hnGRnuQeJ6iOmhfLNIyKNg3nPkdutaO8k8gg1h+0i1TTGG3srLtMThoo6V7mO9EhAYR45wriagDpA9NK7bFH2ymfs1ugnuVSymgnr6uARtLnhu89kT3va0A5yQAmL64k2sdNzbjq7VV+tlFq2n05aqB03VyaeY1peGEgYk5uzjuReIV23Xqv1JR6Nlr79c73fqi2Nnujqqoe/q5XuG5vHgN4hKs6706E2jx7g3WlBVsLm11ZXPcxw4kFsfP1Kxm/XDOtdn79NPgqRby2z1M7paeVo81srWAPj9J5/GhK3ih0FHT6b0OWwsyxk8byW8cu87+CuJrczpp1Jpy5viYwvbSAgHhxzjh61UbZZdHPGyOKkyx0zXvdvkcA9rM5VEd6Atr75dK69yNEorXNdATzELWlsbR6BlSFdqaKtX/AFSpqfhj64F2B6Qp045u6RVHFZNHs1NMzfZZ6iMSsZjL45Duhvj5ytJ9c9WC1Vms71TamvGZaqveHMB5QRhpDY29wAWVvz4m7Tls8mt1xmbx3KEEOdjHDeW2Xz0bZhHZ7WSA4vYX57s8lB+omzv7x7Fwx/Iov2VitRiNssYl0RUNIz91j+kpPSuMLDR+TUVzieMdXV1OcDjxJIXRlFHSBtTaDaBoK9xQtYZqA0FVLjmSd6Fp+IPUq8boyB1Xp+2NGG71rc3Gf/VeqjxYoTLBbRnm+JpwOzKCxs8Iqqq81Ixuy1EzwOY7Bn5kEq7QaY1IEXDLrRA3dxw94Eg1GghMjw5uGtMJIaf4IJH6KEZi6SesGnmNH2r/ADZ1mtcjs9YUQEBAQEBAQEBAQEFMBBBHTg4dGPWX6J+9wqz0TJpj73LX+aw/sNUGUQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQfGoqoqSJ0s0jYYm++e9wAHpJQas/aba6gllphrL/KHbjm26EvEZ73OOAB48VcTR1z1ZdGllPa6KzNcDuz1sxnc0+MbQ3Of7SfD6thoi93R5ddtV1bmPbiSmt0TaeLP9XO84D4ymj60+ybTjXslqaWa41DQQZ6yoke5wPY4ZDSPiTTHk7J7NDF1NDPcbXShm42moqtzI2jwBzhNMQntM6FceqLxTXmw6sqrdW07Io/JrlD5XTzNY8P8/JDt44ILs4weSumPzn6TezrWXR82lVU15sNvt9LepKiqozQyiWDJcSSzgC0NzndI4E81Gp9ZKl0rFe9nFHMHxGtk00Kt026POkZO0jJ8QtM9d6dFSnbB0Tb4wneb1lS5xby94wnCnRzDtE07DcujzXTSl7jSXOOviLRxOHk49BbhaqR9IaFsumtPvOHBm8eHiMfxVRla+3uOnrnH1Y+6RRxDvA3s5+ZBm79X/YzskqauJmap0slPTRnGHSvbgINP2f6fZRWe2xAboio2DPYTg5+corrPRlHvdGl0LSATWns4Dks9OODOkVqmXatW12nbG57bDYJT5RM0+bXVgHFvixnL0hL9WfF5pG3Mk05YJsNYHRhxA4jkQqjfKuLyfSt2AwC6BkbGgceLiFUZCx2tkUNFDGA1jW7rSeXDgg/RbQbdzRtmb3UkY+Zcq2xW1xhfoqpA/wDEZz9KsSuSmUogqLswYLX1LzjGSchdGWg7a9Ny6p07dqOlaTV0lBBPBu8+tjO8cf4QR8aK+OmqoXSyWeUDq3vtrXlp/ELnuJbjwRF7ZG9RDQOLchm6/wA3vHFBZ6dpTHRy7oznffj0uJQSzranb10BaQ3Nth4D+wEg0uywHzC1pDWw4APzoN96LH4TGsP/AKPtXH/ezrNa47KWFEBAQEBAQEBAQEBAQQP04fwY9Zfof73CrPRMmmPvctf5rD+w1QZRAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEHkuwgbwQeKipipIHzTyMhiYN5z5HANaO8lBqGotrmltORTGe7QT