у протоэукариот по сравнению с их предками археями резко увеличился геном – точнее, его «полезная» часть, мутации в которой влияют на приспособленность. Он сложился из архейного генома и геномов прижившихся симбионтов. Между тем известно, что угроза генетического вырождения быстро растет по мере увеличения генома. Чем больше геном, тем больше в нем возникает вредных мутаций в каждом поколении (при неизменной скорости мутирования в расчете на нуклеотид).
Таким образом, угроза генетического вырождения должна была встать перед древними эукариотами в полный рост. Поскольку секс прекрасно защищает от этой угрозы, отбор должен был содействовать адептам сексуальной революции, делая генетический обмен все более интенсивным.
Прокариотический секс не может достичь оптимальной (т. е. высокой) интенсивности по нескольким причинам. Среди них и риск приобретения неподходящих фрагментов ДНК, и засилье эгоистических элементов, контролирующих ГПГ, – таких как конъюгационные плазмиды, «заботящиеся» больше о собственном распространении, чем об интересах хозяина. Но самая удивительная (и возможно, важнейшая) причина в другом. Она связана с конфликтом интересов[44] между генами, участвующими в гомологичной рекомбинации. Когда бактерия заглатывает кусок ДНК и заменяет им гомологичный фрагмент собственной хромосомы, то это выгодно заимствованному фрагменту (он получает шанс размножиться), но в высшей степени невыгодно заменяемому фрагменту собственной хромосомы бактерии. Ведь он обречен на гибель, он будет разобран на нуклеотиды и не перейдет в следующее поколение.
Способность к активному заимствованию чужих генов (трансформации), как и другие признаки, находится под генетическим контролем. Иными словами, мутации могут влиять на частоту трансформации. Допустим, у бактерии есть ген (назовем его tr), от состояния которого зависит эта частота. Такие гены называют модификаторами. Ген tr – модификатор трансформации. У него есть два аллельных варианта: tr+ и tr−. Бактерии с аллелем tr+ заимствуют чужие гомологичные гены и заменяют ими свои собственные. Бактерии с аллелем tr− этого не делают. Трансформация полезна – она дает все преимущества, о которых мы говорили выше. Какой же из двух аллелей победит в конкуренции? Какой из них зафиксируется, а какой элиминируется?
Моделирование показывает, что если бы ген tr сам не участвовал в трансформации, то непременно зафиксировался бы аллель tr+. Что и неудивительно, ведь он полезен.
К несчастью (для микробов), защитить его от трансформации практически нереально. Если уж бактерия меняет свои гены, то и ген – модификатор трансформации tr тоже будет подлежать обмену. А теперь – внимание! – самое интересное. Аллель tr+ в результате трансформации будет систематически заменяться аллелем tr−. А вот в обратную сторону генетический обмен работать не будет: ведь бактерии с аллелем