Александр Владиславович Бедрин

300 инструментов повышения продаж в косметологии. Часть 3


Скачать книгу

подобрались к третьей группе цветов. Получаются они, если смешать первичные и вторичные цвета, которые соседствуют друг с другом. Итого у нас три первичных, три вторичных и шесть третичных цветов. Ну а всего их 12 штук, как я и писал выше. Тут уже присутствуют не только привычные нам классические цвета, типа зеленого и фиолетового, но еще и различный оттенки. Например, салатовый и малиновый.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAhhBdwDASIAAhEBAxEB/8QAGgABAQADAQEAAAAAAAAAAAAAAAUDBAYCAf/EABkBAQADAQEAAAAAAAAAAAAAAAABAgMEBf/aAAwDAQACEAMQAAAB2x6nogAAAAAAOk5vpMMaDzM4+WqlL2qpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQqpQq+MOaleOHpd4TIAAAAAAAAAAAAAADpuZ6rnwycj1fKRAdPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABepyLHn8XHfPfjv7AmQAAAAAAAAAAAACllyzkK/0kdfKsc+GhzfTz72kK7XWQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQriQrjxflVeXm5bVv6nTvLU1rTFOba3wWsAAAAAAAAAAy4rVKfY/rFEZGNe9a7o7PBx8/q+Pnd15GNM5GMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZGMZer4/oufD1zvX8lDy8unfeaNvLOINtQAAAAAAAABmiMu3mh45Bvs2dbo8s6EetyfNhiHd1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN7RVr2cSjm4ePkHvx39rZ1hTmVNfLPTG2oAAAAAAB9p0rp1McfPP78N9Rlht9Hi8cHHOi+vPb1Be4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG90vGdDy83iD2fNmgOrpVZSld3SoZaUlPvzbQEgAAAKE+3ln9m6oDXQZIj503za4uRy+xN21Do3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZMaI6zJzHT8PHzOr1/N9G+oN9mXEiK/iXRyz0POxr66BMgAALcS3jlEG2h7s51ndDm8cfL7gYtHfUOnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbeoiOv9ct0XDxyJnZz9NOcZ8HV0KM6jSutr7GvaQtYAoM6T1LIiTb90MMuZp2FKY8mnGiK0DE6ukNdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHryRdq8bs82HUzvtDnx5nN0PnS/La/Q6m2slQ8aX0m9kh0T5L4OKr85jFvr1XnkbUPk7WdO4aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2FEV6XLUMMei+8t5zp1jmfVa9I8e8ckK7C10kDv7VuJbxyiDbQEgAAAAAAAAAAAAAAAAAAAAAGShSksXuAAAAAAAAAAAAAAAAAAAAAAAU9jLKItoRGfBroEyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAozqOdNbX2Ne0haewyY8nl+ehXYWukgd/atxLeOUQa6BMgAAAAAAAAAAAAAAAAAAAAAV6eKZx8ujjqyuncZbWxOnxYY866Tm9NDJcRz7osVKwn3PtrrrEesFjRiuqXJmG6P5nTnX3e100HQ+ss+cVJeuhW0qxrDS50HP50FK0zXRZMcuZZvO2uNe9ZZ8+6TTlHG2wHSxrPO83Pmazfb15LSVN/HPnHRx5nUGuhby448+6Tm7WN7dhEdBlrXmm/oa6FbRiNcoTM90XO1graZqjS5fgUoF7gAAAAAAAAAAAAAAAAAAAKM6jnTW19jXtIWnsMmPJ5fnoV2FrpIHf2rcS3jlEGugTIAAAAAAAAAAAAAAAAAAAADc0+gyzxRuiw5ZZ+a63nE6u1q0d9dqJVlVjp+Y6fmKUuaFrDnTnrOfJa0zBt6mlqevT18M9SUdfRS2PWhhlpDp3ffm/Wuh9ufM6bXM9Xyla29Df2qV5p0LS+bmOp5aIW4nRzMapDuREjz6866dNyvQ87lm6Tm7FrT9ejOvYL36XHkg8fLX1dCre0bNS19L0ed6nWxzh9FhzxHMHrr6ei5zoucwx6Xmul5oo7+hliJPry6N+p5fo4GGNebSmmC/hmlrm+k5st6G/tUrzToWl8vM9Ty0QHRuAAAAAAAAAAAAAAAAAAAAozqOdNbX2Ne0haewyY8nl+ehXYWukgd/atxLeOUQa6BMgAAAAAAAAAAAAAAAAAAAAe+inOfDRYW2u/vQunwx5i3oWpmJqffm2vT8x0/MY5dHC2K0Rzahl10lbXn1M1PeOJhls6nRxNL0dbW6ClOYUfeuk/o+c6XLPl/m/taab/L9VytKW9He0Iaj46Nun5jp+bwxyWcmtSsS9qU7TA80J+mnQc110bHKVc1atpjaP35vsFrdLzvRaHJzSdrcoaXwzPWiW4fSz61lKP3XWbS1OjpSVKq+SlzXVwKVzZ9ewjllLNrrv8AN3efpS3hzbudNKJ689G/S810nN50t6O9oRXUfHRv03M9NzOGIdG4AAAAAAAAAAAAAAAAAAACjOo501tfY17SFp7DJjyeX56Fdha6SB39q3Et45RBroEyAAAAAAAAAAAAAAAAAAAABs4PKICZbGuiN7XwogLW29QrDPgSpY9FSv314Xtsa4ZMusgy4kqWPRUqz4F7UtTArXY1y1s+PwAmdvHgz0pekUIOWe+0GunUc7fgY5W5NfnZmjo+GuoXsBtZNFSu9rYkgtb1u6CtaWnhQqbGt8xyxtFtpS3olvHLQy4skzhaDXT78L22PmBWAtba1SIz4/ACZ29QiAmQAAAAAAAAAAAAAAAAAAAFGdRzpra+xr2kLT2GTHk8vz0K7C10kDv7VuJbxyiDXQJkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD15IgJn198IinMIgLWAAAAAAA+viICZevKI2vWmrAXsAAAAAAAAAAAAAAAAAAAAAAAAAAAAozqOdNbX2Ne0haewyY8nl+ehXYWukgd/atxLeOUQa6BMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKM6jnTW19jXtIWnsMmPJ5fnoV2FrpIHf2rcS3jlEGugTIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjOo501tfY17SFp7DJjyeX56Fdha6SB39q3Et45RBroEyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAozqOdNbX2Ne0haewyY8nl+ehXYWukgd/atxLeOUQa6BMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKM6jnTW19jXtIWnsMmPJ5fnoV2FrpIHf2rcS3jlEGugTIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjOo501tfY17SFp7DJjyeX56Fdha6SB39q3Et45RBroEyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAozqOdNbX2Ne0haewyY8nl+ehXYWukgd/atxLeOUQa6BMgAAAAAAAAZqv2vx8up7y+cctadf+2ni1aT29jd8dRlnpZtjFy82rF6nze3HM+Du7G/46fDHSy7GHl59WL1WO9+QZcXd1hMgAAAAAAAAAAAAAAAAAgEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKM6jnTW19jXtIWnsMmPJ5fnoV2FrpIHf2rcS3jlEGugTIAAAAAAAAHvfmq1+/CZs24dvg49Dm7UXp3v1dfY5OaNE29Tu67tfmOn5OePD6rlejbo6OHLycsSPsa/d29DS5zpOTliRum5no3DfYEUPV73xcvG/MmPs6m546nHHn/PSYcc+RPvZ1UPt7Jx8vG+c2Hs6lGf2GOXPz+y5CIxm5vtr0LmTj5oePoFacl8uz+jf46Jhjzrohzrohy2p0PPdPRQ89F958OQo1N20w9HqvlK8Z63dDs6qS3n4+XjPm/odnU29Tqs6R9fquczz0t7D1EzzuHqMOdORffnZ1trV6zLKK6Jz4chi39Ds6nr301KRs1v5y4QZ/X47TyDa1ezqy7vzoubDmdLpuZ1uz4KlrecPUTubDnKM7sNdILomGPOuiHOui+HG/Mnzt6/O/Z2uXmieL7OnI4ey57facOjeh6uZuLk510SI5zW6xM8W6Dn+noDS4AAAAAAAACjOo501tfY17SFp7DJjyeX56Fdha6SB39q3Et45RBroEyAAAAAAAAA29TfpSnl2vvDx/J1HSTzvnY1+/s7DJ49+bwcjhzYfS79jrOS63l58XJddyUz1/wB+Obn5HH78en6G31PK9Vx8uvyfW8lpcOnoBHYe/HvzODj/AD6qd/bR3Pk/h46OHLiiOR+/Pvpd/X5MfvzODksNjx3dcvsIlzDH7yHX8hacfV831kz9k0+Qzrs7Ex1dG3gxrTttREdflw5vP4udweNfv7M+AvfsMmPJ5nnzY/zW7uy7X4/r+fDW5XsuR0vVt8j1mdJ3PdhyOuubq4tvLLFyVyDtrudPzHT5Z+MmhuY5c/O6Xmu3r3enm7/Nz/Mk/fzpzehv6Hf29BUw5uHjkRLGHq6PnQQbuOWlzXYchrpQ6Lnejyz0eZ6uRpeXU+7drVJ1Gdzc/ObWq9Dt26UKvjndn0JfLzSmo7u37bh9Zlln0t7mefHzsynZ1dn4wbfBxcd4oT/Q7uuy4s3n8PMYKWLs6sXSyK/Pj85DpOZ10+Dq6AAAAAAAAAFGdRzpra+xr2kLT2GTHk8vz0K7C10kDv7VuJbxyiDXQJkAAAAAAAAAD768Ii3Y5jp+Lk1uV7HkNNOszaO9zc/J6+/oeh3bXVc70XLzYeS6XmdL9j61tnl5+Rxbmn6PdudRAv8AHy63KdHzm2odG4I7D15eZwcz0+ru6Xxczs6W23X4c2Hl5uR+/Pvpd/X5MfvzOA5jH0bdX95TqM8/XIdfyGuubquS6yIxcj2PI2nwOrpABHXZsObzODk9fY1/R7gtbsPfjJ5fncjh29T0u/72HJ9dzYOS6zkEeOk5uhtr0nN9HocnPm2WvSkDTPR7tzp+Y6jk5p335Ml0XLdXNpFDS3ueiN6nMpxHN6O9odvX2PvDl8/h8uZ1ejfsHHrT1vJPmulHo+c6LmwNPn4jrHJ0Zm3PozqU5wej3K8ivlS7LqS+Tl58eh3Ov5Dqubn2uU6vms6aA7evpKGrteb58CVQn93Z12bDl4OM5fX327Dxy/TZ0iTOz5fo21B0bgAAAAAAAAKM6jnTW19jXtIWnsMmPJ5fnoV2FrpIHf2rcS3jlEGugTIAAAAAAAAF/Vq7XBxcx76Ra2lusGOWLl9nW7eurf4zpccvUfpGdNTa+6VKTpPrz6HdZtcd03Nz+ZPSM6a2yn1pOmffnodwWsCOwyY8nmeen7nK664cuLL2dXX4c2HzuHkfvz76Xf1+TH78zg5LDmw+l3few4/sOfD1yHX8hDH1nJ72t+mmUPfHy8zm6D5ppDkX4HRuG2nXZsOXzODlNfY1/R7gtbsMmP35fnaUi3s66TabxnTW5fc0+3rffjbTrssa15vCh2+S10wjt69zqOX6fi5J/O9Dzu2vXZY9nk5sXJW4XV0dBTmU+bDm9Df0O7rvVeP6Pl50PqVa8ps9EtbnZ1uJ0b0ei53oubn0uZ6bmdtVSXU0v0E6hP4uTnB6PcryK+VLsupL4+Xnx6PcsxvVKdjq4t/g4+a2rjS/zx956tdLwd/b12XFm83g5rB1bbXmui9s6OZp8/vsHV0AAAAAAAAAKM6jnTW19jXtIWnsMmPJ5fnoV2FrpIHf2rcS3jlEGugTIAAAAAAAAHvb0Va1UpSu9p+V7BaX34N7PKZ13tL4tIWs+/Bv5pTPPe0vi1gtYADd9aClNnWLWffiW980lKhe+790VKffheze0VY3tL4AtbLuzVK1cU9Ff