Нейросети. Раскройте всю мощь нейронных сетей: полное руководство по пониманию, внедрению ИИ
Одногорячее кодирование:
– Одноразовое кодирование – популярный метод представления категориальных переменных в нейронной сети.
– Каждая категория преобразуется в двоичный вектор, где каждый элемент представляет наличие или отсутствие определенной категории.
– Однотонная кодировка гарантирует, что каждая категория представлена одинаково, и удаляет любые подразумеваемые порядковые отношения.
– Это позволяет нейронной сети рассматривать каждую категорию как отдельную функцию.
3. Встраивание:
– Встраивание – это метод, который изучает низкоразмерное представление категориальных переменных в нейронной сети.
– Он сопоставляет каждую категорию с плотным вектором непрерывных значений, при этом аналогичные категории имеют векторы, расположенные ближе в пространстве внедрения.
– Встраивание особенно полезно при работе с многомерными категориальными переменными или когда отношения между категориями важны для задачи.
– Нейронные сети могут изучать вложения в процессе обучения, фиксируя значимые представления категориальных данных.
4. Встраивание сущностей:
– Встраивание сущностей – это специализированная форма внедрения, использующая преимущества связей между категориями.
– Например, в рекомендательных системах встраивание сущностей может представлять категории пользователей и элементов в совместном пространстве внедрения.
– Встраивание сущностей позволяет нейронной сети изучать отношения и взаимодействия между различными категориями, повышая ее предсказательную силу.
5. Хеширование функций:
– Хеширование признаков, или трюк с хешированием, – это метод, который преобразует категориальные переменные в векторное представление фиксированной длины.
– Он применяет хеш-функцию к категориям, сопоставляя их с предопределенным количеством измерений.
– Хеширование функций может быть полезно, когда количество категорий велико и их кодирование по отдельности становится непрактичным.
Выбор метода работы с категориальными переменными зависит от характера данных, количества категорий и отношений между категориями. Обычно используются одноразовое кодирование и внедрение, причем встраивание особенно эффективно при захвате сложных взаимодействий категорий. Тщательное рассмотрение соответствующего метода кодирования гарантирует, что категориальные переменные правильно представлены и могут внести значимый вклад в предсказания нейронной сети.
Часть II: Построение и обучение нейронных сетей
Нейронные сети с прямой связью
Структура и принципы работы
Понимание структуры и принципов работы нейронных сетей имеет решающее значение для их эффективного использования. В этой главе мы рассмотрим ключевые компоненты и принципы