Скачать книгу

и нейтронов), существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями – элементарными частицами.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

iVBORw0KGgoAAAANSUhEUgAAAwAAAABbCAMAAADz/hIVAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAADZQTFRFCQkJR0dHiYmJw8PD7Ozs3d3dp6enIyMjaWlpERERNDQ00NDQV1dXenp6mJiYtbW1AAAA////l6eSvQAADY1JREFUeNrsned65KwOgD96c4H7v9lDswd7XGDMsyfJyH+SZYMsCb1GFJv/7H/9LvuD6/yY6t8k6mfatxVrXb/L/uA6P6b6N4n6mfZtxAIAELUAAAAAUQsAAAAQtQAAAABRCwC8LmKtVTT+ypWVAAAA8G09ALYp7o0S1gIAAMDXpUC+DzABBOw4AQAAgO8DAFmUAIAxAADwjQD4ccAMAAAAXwuAk1YkAIy2AgMAAMCXAUCVxQEApkY/Jh4BAADguwDwUa+oB2CyfhQsLAAAAHwZAD7qpQcABwBGSwAAAODLAJitHbDjYUUAQw8AAHwdAA5ZPwxw2j/9kQQAAICvA4BFAKi0dqQAAADwLQCwmRoUfxstrAMAAF8HALIqT/xThR0j8aIfKMnk0FiHSXW+6HDpDDNYi8wjX5pL3KuaImwjtJZ0aVWKtUXPA4TbdKkOsRacLDDtEbVBlJ47AcA1eYlV9wreAOBdJrOMKcwC3TXqWTBjcd6Ax3WYUkjYs/2nVzobMfp4UeyBL6l+DgAKrhJdWpUrhU2HAEEKhUt12NRLrI8tojpQGUX53Jr3cBWXa3gaJSnTusMYoEs3ZVoBkFPijzc7Iw5ShkcRPIrHABj0zGGlK6ymPUSx9Cyjdn6uVYos3qGHo2pIzwvWpQcYskpUiATXDwHANQOQ2x43O4O5W8tvTCYIPwZAkl4A4Lr4vxfF83sdooNWVicvPweAJ1fz25dN6uIUZ5WmJFYo+ksBSNf8AQDu/tlkbxIg+hgAZtXAuwBArrO59kGiHjuIGmLXPHZI8bKryW262AaATj/RbWr10wGYP0zix899OczuMQAyjAB0l8Tdjq4nAMz20MpYrxa/N7AGgDHPGXQFIL3EctOQPx8AKT5yBheCfuzLWbrnADhKRmXV8wBhfhg0KKtJLwAm0YWlWVkhaQdJ3Ma26gwAy+Lw7ezZjwaAKvKJM8IEzGXsXQ4hQsb9HIAoqcPcJY9zefx+QrVWq4oMqErU5H3chUptB+bI0DcFIn8DgDgV9IEzKBdW0c98iYjrBICj4vnURm5B3GlG1T8aWRcA+MCk7TJ3SX1XqfnQdxBsVgCGXwwAlx87w8feZ5tWp9F1A6DHNGEGgPb6IMGkXQ8AeHi++E6gz9xlTFlITwD8GICmsdgvHgMY+cAZ04cAKLtc+DkA5HmA8Oy4XgDoqQsAafJ+uh2g17pK9ljpPpwFmn8tAGZ84ozL2LuojuOFLMKkQw+gH7cqy7lPpxSoKgOqWQeQN63a5ipuFe0LwGQj6er3rgPk+Cf8M2fI4Vni8SwFonHDFNUdRq5pk4CpWNKsig/tugAQ11l9YjZ1iVpeMV/WCABV2v2klWB+vpxzXGdO+1a0pY3OMGFjFcWa/j8B8OZOhGveoVWpVsQRjfoEiJj6ADCHqRs23K5R1yg1+/yHuj72Ub1kZWENlYifshcoJtWooc68ZOKy1Rl0CLfiT4eeD3sAaa0Y+8y30KttsY0BYmyfXRUuzFv22Q1KrBpIJ6Xyds0kjug6t8HHcf919W8SBV+HBgAAgF8IABZWSbbkLrlbobE09npmUIevBgAAIOovACA1c1OcmaIDjjv1wq96CKXxVxWG/1Yw6AEAgD8IAI6TxSLO2+AIQBi/yjilGlcmSdwOfjCqBQBA1B8AoHzTbQWArWvyxpnYOwAAAMCfBMCUC9wrADyXopD9yDANDAAAAH8SAFLuoFsBWPbVoThFzo8n9gEAEPUXeoBi3wmeMgBTjve0vSjs0QIAAIA/OgbIe6rDcmrYE5bHAGkVEYUfRilIgQCAvwqAjHuTWNygMS4A5NyHqjHuuJj8cBgAAAD+JAA+vi0K79NPatbxxYd18p/KUCDTqBjWAQCAPwlA3H8VXg2creB5NZgsu7JofOeWpS+fwUowAPAXAfinSgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP8EALjg+uILegB4bEMKBABA1AIAAABELQAAAEDUAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUFzEbk8uuT5+sd2wnnX+TfWa+v00+fGi/pGrWg28BsCMOpzyPBp6dCyPKo5YYPsv+O9lseKglilWJAO+MWxfJ7yJmb7UW18nfL1ep9OhZN7yMTSp6RxH67FcTIrNeQFvHrsws/iicHytenf4WIMhUVbxp4WCVaKMF4WKg1iGVGFfXOWf0pCXVhtl61zFlh05Zuuqg0MRWrwe6y8xM+v4Zu+++AyAcLaD9OqQEDnv8T+Xh0x5WduDWLcVmLfo9b/aVwynR18D8FaHqnAWid6e9XRTZ7YCqXSIJ1UiHjWzOdHzTk0fFsLK5YXn0fuPXTTFpZnaIv84ySeppPMb2EeG+NplxJcKVokyYsS6OKeHJ2H74jr/FIa8tNooW+kqHz7hiicuFa6KjT5tT0dp8TrVmvlgZ8nQyRE17ovPAAhfhJg2LtpeQ9nXsPCCPLmg1Lx0ZOm3yd71ALs6Y/wcEdtWu6kTz+aSsYX4lBuHtqhZHFrlHSLvOuNzM7mMX1HKIt7Pr683JPa+9hW+b6dq3fmRxqc+XnOG1Lq74kr/bAxZtNopW+WqIf1xOL27dBVS6XnBP/O6N4gFilD8K+mWo8OK4lMAUJHVTwdfTNkei8Z2X4Z4q/DSceR51HAHwK4OSqF7DcC2Tj5YLx4VnNWVsuGW4dge83KIvM9GT82UOVwTVvg+sT01JOmyjr3eT5W7MYptvY/yWersqFHu/LM1JGu1V7bGVcTkMGIbV+UPMbPNALPB6xkNGVQZoj5RYll8BoB3SxHi72MAnj+IgtykYleCNsRfeC4/NJoAEPGjRHKfedXcJ6Yu5MXt3FDdZ7jrn2OrXQsAh2bmb4j5PnuiTcbvDFkAKBVsErWe3D3h8uTh/YHed6K2hqDNn4/VABQG6q2ryHo4MvvI62P6iX3oLCeMB1FF8SkAg70+snsY0h8hYuxyFDGp8ZwZXDMAsQ713qZGzC11lqZYPcxVS/Ui6OtC7c5MGr+sHT8orJ4YsoTaEZU1oqjO3/02ujx6ey2uFLUzZA8AbXOV25xdGV1Fsn32MrbOvY7SQzxw5PtKt4RpUXwKQBjdXxz9R2NW5odAgrk8mMB1PUDupJoASHWMH6Mh1lYnufUF+iBbqguLpbCxVXyuPftObmCVABybybOPyCSuB4k3hiyhVijYIoqL5aEbpn1WAF7F1aI2hmwBELLRVSE1YVtXsTgrVA/A3us5DQtZHl+/6YzL4lMA7OHUT6EezQCsKCFZ5bnFxy0A5Dpmk5ZV3sff6TVxtMuAbqp790vmSJz6lGEGjY7bg8wvmuLYTISLObZrUZeG5FArFWwQFVLXNHQYJ/cC4FXcolVhyAYAcjVdd2JgkQFlV43Wj6gNrk2B9l63r0jHBQD2OQBoyLN5KJNW+0Bb+7sGAHIdo9m0Py/4/j6+X381Khctt8wOIukDkPh9JHzeFMdm8mGTZPKPDVmGm4WCLaIoFzFqCXIFAGtxk1aFISUApdcrXeXDiL+5yvcwAuPKQfCb19US6ar4qv9UFp8CgJYxQF6f2H4AmiWbcf2h18sfrv1dAwA5A1Lh+9SqErRXvyqLCsPYcsvlCaFj2ojTLCqqaopDM83mHHR2vaZ2acgWgKhgk6gwoCI+SNkGgFzcKOplSAmA5LXDpTIDoseuull+PPd6OsMipj/LcELExpyLObljAKb1mU7Sx299sPPQ48Zn8JRU/QAA7doBSHUGlZyk2+4z8XLkYlpuyXJohHGTTOqSSgCOzKTDNsOu6wEODXmlQO5t/qFCVGxfEts4X2Vxqyh30ANMvHq+4CVqHI5dxWsTzzevr9M9YzELRMvi83UAvQY3Sg7yaY4LOX/ob7V0nwEwy3YAch0kDkZat/fhZUvsM6C76iKlFsj/4Cn3IXUp0JGZVNJdL0o/NuQ1CF4VbPF91MsPHnC8rMW4LG4VxezbGIDz6gmzQtSaAW1dZdQNledeN2njy5DWAcyyMlAWnwJg1sXsFQAe+w8PAMtjyXYA5NwOgFz28sS20UPLfXJL4NSsaGy7ZYp6KtAaa1Pd5PaBmblRWThqLWoj8QNDrHtTsMH34R9DMdw7LK4QtTNkBWCrbL2r6JurUiDyOpYOvB5XT9OSL4nP+7QSXBSfAuCoD3xs4uyjRRsAyKTWxQJNqwDgeZfJ6xEsLaJNdZjSPm3F23mKmzpYpR0mOj+qTKOa0o+Y2BA7YKN8xszVddSem2m0TluR5pC4jGTewdhoyDKbVShYKcqEbWoUF+0WAXgvvhe1M2TVaqtsvauGZW1idVXYkKnEXd56EVxMDZSh9N9hZS4fcVoWnwIQtsGF3aACYeO2AOQMCNnTuaJd6TKOXjupOLC4Xnd/q8Pud4Pu6oxLipseIZNuVdMV+xLN/RbHczOZypqIGCBeKHEfG1L6vdxjWiWKhiVOtBl+2MPiCv9sDFm12nm90lXO5RW1jasOdGrwepA2vPwzibUBy+JzALZXAYC7veCFGBD1C+xrASBsfA0bo9Hu1RcAAAD4CgB+ZjADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAkAXHB98fU/AQYAOGBsLA7a3M0AAAAASUVORK5CYII=/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA8AAD/7gAOQWRvYmUAZMAAAAAB/9sAhAAGBAQEBQQGBQUGCQYFBgkLCAYGCAsMCgoLCgoMEAwMDAwMDBAMDg8QDw4MExMUFBMTHBsbGxwfHx8fHx8fHx8fAQcHBw0MDRgQEBgaFREVGh8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx//wAARCALqA0cDAREAAhEBAxEB/8QA3AABAAIDAQEBAAAAAAAAAAAAAAUGAwQHAgEIAQEAAgMBAQAAAAAAAAAAAAAAAwQBAgUGBxAAAQQBAQQEBQoODwYEBgIDAAECAwQFESExEgZBURMHYXEiMhSBkaGxQlJiIxUIwdFygrLSM5N0dRY2VjeSokNTY7PTJDRUlJXVFxjhwnNEtDXwg6O18WQlRVUmhKTUOFgRAQACAQEEBQkGAwYFAgcBAAABAgMRITESBEFRcTIFYYGRobEiUhMzwdFCYhQG8OFygpKiI0MVssLSUyRjNPHic7MlNRZE/9oADAMBAAIRAxEAPwD9Ugcb5TzNfvH71ue8fmGsv8ucorXxdDEytVar5pXStty2IX+RM9JKysar2qjW+bvVVCD5D7Wt87Pm/DxzzOxeOwafJ9KSV8kVdtj5OmkZAxyqkbFe7XhbogH6ATXpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4uvI3eJyT3rZrmfkrFU83gebVjflqE9pKMle01XudPxqyTViuc5V4WucqvXydmoEJyL6QvzwueFsoxJ1wUCyNjVVYirFjNjVVEVdN2uia79E3AfoMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0s697MJkHscrXtrTK1yLoqKkaqioqAcr+alkchkO6GtYv2pbdhbttFmne6R+nHrpxPVV6QOwgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHNOWe6fPYrvSyHeBeztK5by9dKuSpw4x9dFZHFFHH2Er7lh8Wno7Fci8SO8rX3CsDpYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocwf8AYcl+CzfxbgOS/NE/U1V/Drf2aAdpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OYP+w5L8Fm/i3Acl+aJ+pqr+HW/s0A7SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocwf9hyX4LN/FuA5L80T9TVX8Ot/ZoB2kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnI1Fc5URqJqqruRAIS/ztyjQ1S1l6rHJvY2Vr3pp1tZxO9glrhvO6JR2zUjfMIt3efgZP8AttTIZXqWpUkVu34UnZpob/pbdOkedH+pr0az5mN3OfNk39D5We1i7pLduKJU8bGo9xt8ivTb1MfPt0V9bGuU7zJ/NhxNJi7+NbE703dXA0z8vHHXLHzMk9TwtTvBm0dLzLHX62V6MTk/ZSq5fYM6Y/h9bH+Z8XqeV5e5ikTSxzTfds0Xsmww+PzWqZ4q/DDHDb4peV5OV6/H57Mzoq6q191yN9ZiMQfM8lfQfL8tvS0s5yTQ+Rb6uv5F6JXlXhdcmc1dGKu1FUTlnqj0EY4659Lm3zZuVsXku6yvasusJKtuy1UisSxN0Rye5Y5EI8WSYhvlxxMurfkHgvf3P7XY+3Jfmz5PQj+VHl9L4zkXHRt4Y7+SY3qbcmRPYUfNnqj0Hyo659L6nJqMX4jO5iumuujLr1TXxPRyeuY+Z5K+hn5fln0vScu8wRf0fmnIoia6dt2M2xfqmIOKvwwcNvil6Slz/Fti5nZPoiIjJ6MOnT7qNWqY/wAv4fWz/mfF6ntMl3mQb24i4xOr0iF6/ZtMfLxz1s8eSOp7TnHnGD+l8r9oxPOkq3Inr6kb0Y4x8ivRb1M/Ot019bI3vOw0X/c6GRxmnnPs1Xqz1HRdpqhj9NbomJ87P6mvTEwk6HPnJt7RK2Yqq53mskkSJy+JsnCpHbBeN8S3rmpO6U4x7JGI9jkcx21rmrqip4FQiSvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA