VE ÇARPMA
Konu daha büyük sayıları kâğıt üstünde toplama işlemi olduğunda kullandığımız yöntemlerin hepsi basamak değeri ile sayıya kodlanan bilgiye dayanmaktadır. Bildiğimiz üzere 1234 rakamları ile bin iki yüz otuz dört sayısı temsil edilmektedir. Bunun nedeni ise sayıdaki her bir basamağın buna karşılık gelen bir değeri olmasıdır. Bunlar sağdan başlayarak birler (genellikle bu şekilde isimlendirilir), onlar, yüzler, binler, on binler vs. biçimindedir ve sola doğru ilerledikçe her basamakta on kat büyürler. Bu sebeple 1234 sayısı dört tane bir (4), üç tane on (30), iki tane yüz (200) ve bir tane bin (1000) içerir. Yani 1234’ü şu şekilde yazabilirim;
Buna matematik öğretmenleri tarafından “uzatılmış biçim” adı verilmektedir ve toplamaların nasıl işlediğini anlamakta gerçekten işe yaramaktadır. Örneğin 1234 + 5678’i düşünün. Şayet her bir sayıyı uzatılmış biçimde yazarsam:
Her bir eşleşen basamak değerini kolayca birlikte toplayabilirim:
Buradan 1234 + 5678 = 12 + 100 + 800 + 6000 = 6912 olduğunu anlayabilirim.
Okulda bize öğretilen yöntem ise bu sürecin kısaltılmış biçimiydi. Birbirine karşılık gelen basamakları alt alta yazıp sağdan sola doğru topluyoruz:
İlk toplama işlemi 4 + 8 = 12 olur. Tek basamaklı yanıt kutusuna 12 yazamayız ancak 12 = 10 + 2’dir bu yüzden 2’yi bu kutuda bırakıp 10’u bir sonraki hesaplamaya taşırız.
Teknik olarak bir sonraki basamağın toplamı 10 + 30 + 70 = 110’ dur, ancak burada onlar basamağında işlem yaptığımız için kaç tane onumuz olduğuna bakmalıyız; toplamda 1 + 3 + 7 = 11 tane onumuz vardır. Bu yüzden yine bu basamağa sığamayacak kadar rakamımız bulunmaktadır. 11 = 10 + 1, yani onlar basamağına bir tane 1 yazıp diğer 1’i yüzler basamağına taşırız:
100 + 200 + 600 = 900:
Ve son olarak da 1000 + 5000 = 6000:
Çarpma işlemi ise tekrarlayarak toplama işlemi yapmanın hızlı bir yoludur. 12 × 17 sorusu aslında “On iki çarpı on yedi kaç eder?” diye sormaktadır. Yanıtı on iki tane on yediyi ya da on yedi tane on ikiyi toplayarak bulabilirim; ancak çarpım tablosunu önceden öğrenmişseniz çarpma işlemi çok daha hızlıdır.
Elimde birçok marka olduğunu düşünün. 12 × 17 problemini her biri on yedi tane marka içeren on iki sıra oluşturarak ve sonra da bunları toplayarak çözebilirim:
Bununla birlikte şayet 12’yi 10 + 2 ve 17’yi de 10 + 7 olarak düşünürsem, o halde markaları şu şekilde gruplandırabilirim:
Çarpım tablosunu bildiğim için her bir alt bölümde kaç tane markanın olması gerektiğini biliyorum:
Dolayısıyla 12 × 17 = 100 + 70 + 20 + 14 = 204 olduğunu artık biliyorum. Bu yönteme (204 markayı çıkarma) “ızgara yöntemi” adı verilir. Şimdi ise 293 × 157 problemini çözmek için biraz daha gelişmiş bir modeli görelim:
Muhtemelen bütün bu çarpma işlemlerini, özellikle çarpım tablomuzdaki sayılardan çok büyük olan bu sayılar için nasıl kafamdan yaptığımı merak ediyorsunuzdur. Aslında çok havalı bir hilesi var. Herhangi bir tam sayıyı on ile çarptığım zaman sayının sonuna bir sıfır ekliyorum. Yani 100 × 200 için 100’ün 1 × 10 × 10 ve 200’ün de 2 × 10 × 10 olması gerektiğini biliyorum. Bunların hepsini bir araya getirirsem:
Basamak değerinin tasarımının her iki yönde de genişletilebileceğine dikkat etmek gerekir. Birler basamağından sağa doğru ilerledikçe her adımda basamak değeri on kat düşer ve onlar, yüzler, binler vs. basamağı elde ederim. Artık en sağdaki basamağın birler olmadığını göstermek adına bir ondalık virgülü kullanıyorum. Bu da ondalık sayıları veriyor. Burada, örneğin 45,3 + 27,15’i toplamak için yukarıdakiyle aynı kuralları kullanabilirim:
45,3’ün sonuna basamakları eşleştirip toplamayı daha belirgin bir şekilde yapmak üzere bir sıfır eklediğime dikkat ediniz (bu durum, özellikle çıkarma işlemi için önemlidir). Bunu 45,3 ile 45,30 aynı olduğu için yapabiliyorum: üç tane ona, sıfır tane yüz eklediğimizde sonuç hâlâ üç tane ondur. Bu yüzden matematikçiler 45,30 için kırk beş virgül otuz yerine kırk beş virgül üç sıfır ifadesini kullanırlar.
Her bir × 10’un, 2’den sonra bir sıfır anlamına geldiğini hatırlayacak olursam 100 × 200 = 20000 sonucunu elde ederim. Ne zaman bir ızgara çarpımı yapsam bu sürecin tamamını gerçekleştirmiyorum. Sadece ilk basamakları çarpıp daha sonra hesaplamada ne kadar çok sıfır varsa bunun sağına ekliyorum. Bu yüzden 50 × 200 için düşünce yöntemime göre 5 × 2 = 10 ve daha sonra üç tane sıfır eklemeliyim. Böylece 50 × 200 = 10000. Tam isabet!
Izgarama geri dönecek olursam, her bir basamağı topladığımı görebilirsiniz. Nihai yanıtım 31400 + 14130 + 471 olacaktır ki bunu da toplayacak olursak:
Son olarak cevap: 293 × 157 = 46001 olur.
Uzun çarpım yöntemi dahil olmak üzere başka yöntemleri de vardır ancak işe yarar bir yönteminiz varsa bırakmayın sakın. Şimdi toplama ve çarpmanın çok yakın dostları çıkarma ve bölmeye geçelim.
John Napier (1550-1617), çarpma işlemi için Napier’in kemikleri olarak bilinen bir dizi çubuk icat eden İskoçyalı bir matematikçi, gökbilimci ve simyacıydı. Bu sistem her bir çarpım tablosu için bir çubuk içeriyordu. Örneğin 3 için çarpım tablosu çubuğu şu şekilde olacaktır:
Örneğin, şayet 9 × 371’i hesaplamak istiyorsanız üç, yedi ve bir için çarpım tablosu çubuklarını yan yana koyup dokuzuncu sıraya kadar okuyorsunuz ki bu da şu şekilde görünür:
Daha sonra sağdan başlayarak her bir çapraz çizgideki sayıları topluyorsunuz. Şayet toplam dokuzdan büyükse bir sonraki çizgiye devam ediyorum:
Böylece 9 × 371 = 3339 eder.
Napier’in sihirbazlığa merak saldığı üzerine söylentiler vardı. Belirli aralıklarla hizmetçilerine, içinde bir kuş bulunan bir odaya yalnız başına girmelerini ve kuşu okşamalarını emredermiş. Kuşun onların sadakatini hissettiğini de söylermiş. Aslında Napier kuşun tüylerine is sürermiş.