и поведение, вытекающие из стратегий, описанных в теореме IV.3, образуют равновесие, но выглядят неправдоподобно. Например, равновесие требует, чтобы город, предпринимающий отчаянные попытки возобновить торговые отношения после объявления эмбарго, тем не менее обманывал каждого, кто с ним торгует. Более того, торговцы ожидают такого поведения. По логике равновесия, город ведет себя так из-за ожидания, что в ближайший период эмбарго будет сохранять полную силу, как бы город ни поступал. Таким образом, он считает, что любое предложенное им сотрудничество не принесет плодов.
Это поведение равновесия не очень соответствует историческим фактам и сомнительно даже в качестве теории, поскольку предполагает, что город и потенциальные нарушители эмбарго играют в равновесие с самой низкой ценностью для себя. Исследователи [Farrell, Maskin, 1989; Bernheim, Ray 1989; Pearce, 1987] выступали с подобной критикой равновесия в других моделях повторяющихся игр.
Ни одна из альтернативных концепций, предложенных этими авторами, напрямую неприменима к представленной здесь модели, но все они указывают: разумнее предполагать, что какое-то сотрудничество между городом и торговцами может быть достигнуто даже в случае объявления эмбарго. В качестве примера рассмотрим возможность того, что взаимовыгодные двусторонние соглашения между городом и индивидуальными торговцами могут быть заключены даже во время эмбарго. Из логики этих аргументов очевидно, что любой другой вид сотрудничества привел бы к качественно сходным выводам.
Предположим, что если некоторые торговцы соглашаются вести дела с городом, несмотря на эмбарго, они не могут полагаться на угрозу группового эмбарго, чтобы добиться выполнения своих собственных требований к городу. Что же тогда может принудить город к честному поведению во время эмбарго? Обманутый торговец может, например, угрожать прекращением торговли в будущем. В соответствии с теоремой IV.1 было установлено, что эффективный уровень торговли х* не в состояниии поддерживаться таким равновесием, но оставляет открытой возможность того, что мог поддерживаться какой-то неэффективно низкий уровень торговли. Тогда возникает естественный вопрос: какой самый высокий уровень товарообмена х может поддерживаться таким путем?
Теорема IV.4
Предположим, что ƒ – вогнутая функция. Рассмотрим стратегии, при которых город в каждый период сотрудничает только с теми торговцами, которых он никогда не обманывал, а каждый торговец берется торговать только в том случае, если он никогда не был раньше обманут. Эти стратегии образуют совершенное в подыгре равновесие игры 1, когда объем торговцев х, а налоги составляют т тогда и только тогда, когда для всех у выполняется y ≤ x.
0 ≥ cf(y) − γ(τ − c)yf ’(y). (5)
Достаточным условием будет 0 ≥ cf(x) − γ(τ − c) xf ’(x), а коэффициент эластичности e(x) = dℓnf(x)/dℓn(x) – убывающая функция от х.
Доказательство
Очевидно, стратегии торговцев являются наилучшими реакциями