диаметром 10 м. Он улавливает слабое остаточное свечение, еще сохраняющееся после Большого взрыва. Кейт Вандерлинде, мой коллега из Торонто, провел почти весь 2008 г. за обслуживанием этого телескопа. Кейт пережил в Антарктиде полярную ночь, которая на этой широте длится полгода, лютые морозы, когда столбик термометра падал до −73 °C, а также невыносимое чувство изоляции, не говоря уже о снежных буранах и смертельной тоске. И все же самые необычные и новаторские научные приборы, установленные рядом с Южным полюсом, находятся глубоко под толщей льда. И направлены они не вверх, как телескопы, а вниз. Возведение – точнее говоря, закапывание – этих конструкций было завершено всего за год до того, как в мире отмечали столетие со дня подвига Амундсена. Прибывавшие высокопоставленные гости видели довольно прозаическую картину: обычный прямоугольный фургон-лабораторию на полозьях, нашпигованный проводами и компьютерами. Было практически невозможно догадаться, что же находится там, глубоко внизу. Однако ученые предусмотрительно установили на ледяном поле череду ярких флажков, которые красноречиво свидетельствовали о циклопических размерах лаборатории.
«Ледяной куб» – совершенно уникальная обсерватория. Глетчерный лед, толщина которого в этом месте более 2 км, на большой глубине становится совершенно прозрачным и не содержит даже пузырьков воздуха – их вытесняет чудовищное давление. Вечный лед выполняет такую же функцию, как и главное зеркало обычного оптического телескопа. Вглубь льда вертикально уходят 86 длинных стальных тросов, на которых через равные промежутки навешено по 60 сфер размером примерно с баскетбольный мяч. В каждом из этих 5160 шаров находятся оптические датчики и электроника. Датчики – фотоэлектронные умножители (ФЭУ) – отдаленно напоминают обычные лампы накаливания, но действуют прямо противоположным образом: они собирают свет и преобразуют его в электрические сигналы. В лаборатории «Ледяной куб» эти датчики отслеживают в подземном льду слабые синие вспышки, которые иногда мерцают в кромешной тьме. Как только датчик фиксирует вспышку, он посылает сигнал на компьютер, расположенный в наземной лаборатории.
Эти голубые искры возникают, когда через лед проходят элементарные частицы – мюоны. Мюоны подобны электронам, но примерно в 200 раз массивнее их. Физики обрабатывают сигналы, поступающие от различных датчиков, и на основе этой информации могут построить траекторию мюона в трех измерениях. Однако исследователей интересуют не мюоны как таковые. Главная цель – нейтрино, гораздо более неуловимая и, пожалуй, самая парадоксальная из всех известных субатомных частиц. Эти призрачные частицы время от времени сталкиваются с протонами, находящимися в молекулах льда, «высекая» из протонов мюоны. Рождение мюона сопровождается голубой искрой, мюоны подсвечивают лед и выдают присутствие нейтрино. Поскольку новоиспеченный