Джон Форман

Много цифр. Анализ больших данных при помощи Excel


Скачать книгу

просто внесите ее в электронную таблицу и дважды кликните на файле opensolver.xlam, после чего во вкладке «Данные» появится новый раздел OpenSolver. Теперь нажмите на кнопку «Решить». Как показано на рис. 1-28, я применил OpenSolver в Excel 2013 к модели из предыдущего раздела, и он считает, что можно купить 5 кусков пиццы.

      Подытожим

      Вы научились быстро ориентироваться в Excel и выбирать области поиска, эффективно использовать абсолютные ссылки, пользоваться специальной вставкой, VLOOKUP/ВПР и другими функциями поиска ячейки, сортировкой и фильтрацией данных, создавать сводные таблицы и диаграммы, работать с формулами массива и поняли, как и когда прибегать к помощи «Поиска решения».

      Но вот один грустный (или смешной, в зависимости от вашего нынешнего настроения) факт. Я знал консультантов по менеджменту в крупных компаниях, которые получали немаленькую зарплату за то, что я называю «двухшаговым консалтингом»/консультационным тустепом:

      1. Разговор с клиентами обо всякой чепухе (о спорте, отпуске, барбекю… конечно, я не имею в виду, что жареное мясо – полная ерунда).

      2. Сведение данных в Excel.

      Вы можете не знать всего о школьном футболе (я определенно не знаю), но если вы усвоите эту главу, смело отправляйте второй пункт в нокаут.

      Запомните: вы читаете эту книгу не затем, чтобы стать консультантом по менеджменту. Вы здесь для того, чтобы глубоко погрузиться в науку о данных. И это погружение произойдет буквально со следующей главы, которую мы начнем с небольшого неконтролируемого машинного самообучения.

      2. Кластерный анализ, часть I: использование метода k-средних для сегментирования вашей клиентской базы

      Я работаю в индустрии почтового маркетинга для сайта под названием MailChimp.com. Мы помогаем клиентам делать новостную рассылку для своей рекламной аудитории. Каждый раз, когда кто-нибудь называет нашу работу «почтовым вбросом», я чувствую на сердце неприятный холод.

      Почему? Да потому что адреса электронной почты – больше не черные ящики, которые вы забрасываете сообщениями, будто гранатами. Нет, в почтовом маркетинге (как и в других формах онлайн-контакта, включая твиты, посты в Facebook и кампании на Pinterest) бизнес получает сведения о том, как аудитория вступает в контакт на индивидуальном уровне, с помощью отслеживания кликов, онлайн-заказов, распространения статусов в социальных сетях и т. д. Эти данные – не просто помехи. Они характеризуют вашу аудиторию. Но для непосвященного эти операции сродни премудростям греческого языка. Или эсперанто.

      Как вы собираете данные об операциях с вашими клиентами (пользователями, подписчиками и т. д.) и используете ли их данные, чтобы лучше понять свою аудиторию? Когда вы имеете дело с множеством людей, трудно изучить каждого клиента в отдельности, особенно если все они по-разному связываются с вами. Даже если бы теоретически вы могли достучаться до каждого лично, на практике это вряд ли осуществимо.

      Нужно взять клиентскую базу и найти золотую середину между «бомбардировкой» наобум и персонализированным