Стивен Вайнберг

Объясняя мир. Истоки современной науки


Скачать книгу

одним из математиков, который оказал огромное влияние на Платона, был Теэтет Афинский, ставший главным героем одного из диалогов Платона и объектом для обсуждения в другом. Теэтет знаменит открытием пяти правильных многогранников, которые, как мы уже видели, обеспечили основу теории элементов Платона. Доказательство{24} того, что эти тела являются единственно возможными выпуклыми многогранниками, предложено в «Началах» Евклида и приписывается Теэтету, который также внес свой вклад в теорию того, что мы сегодня называем иррациональными числами.

      Самым великим эллинским математиком IV в. до н. э. был Евдокс Книдский, ученик Архита и современник Платона. Хотя он прожил большую часть своей жизни в городе Книде, на побережье Малой Азии, Евдокс учился в Академии Платона и позже вернулся туда, чтобы самому стать учителем. От Евдокса не осталось никаких записей, но он известен тем, что решил множество сложных математических задач, например доказал, что объем конуса равен одной трети объема цилиндра с тем же основанием и высотой (я не представляю, как Евдокс мог сделать это, не прибегая к математическому анализу). Его величайшим вкладом в математику стало изобретение метода исчерпывания, при использовании которого теоремы выводились из простых аксиом, не требующих доказательства. Этот же метод использовал Евклид в своих работах. На самом деле многое в «Началах» Евклида может быть отнесено на счет Евдокса.

      Хотя открытия Евдокса и пифагорейцев были большим интеллектуальным достижением сами по себе, они оказали неоднозначное влияние на естественные науки. Начнем с того, что дедуктивное изложение в работах математиков, достигшее вершины в «Началах» Евкилида, постоянно повторялось и в работах исследователей – естественников, где такой стиль совершенно неприемлем. Как мы видим, в работах Аристотеля математика привлекается очень мало, но временами его аргументация выглядит как пародия на математическое доказательство, как, например, в дискуссии о движении в «Физике»: «Положим, что тело, обозначенное Α, будет проходить через среду Β в течение времени Γ, а через более тонкую среду Δ – в течение [времени] Ε; если расстояния [проходимые телом] в средах Β и Δ равны, [то Γ и Ε будут] пропорциональны [сопротивлению] препятствующего тела. Пусть, например, Β будет вода, а Δ – воздух…»{25}. Возможно, величайшая древнегреческая работа в области физики – это сочинение Архимеда «О плавающих телах», о чем мы поговорим в главе 4. Оно изложено как математическая работа, где из постулатов выводятся доказательства утверждений. Архимед был достаточно умен, чтобы выбрать подходящие постулаты для своих выводов, но научное исследование честнее представлять как единство дедукции, индукции и предположения.

      Однако гораздо более важным, чем вопрос стиля (хотя и связано с ним), является ошибочное желание достичь абсолютной истины при помощи одного лишь чистого разума, на что вдохновляли