ИВВ

Уникальная формула и алгоритм в квантовых вычислениях. Открытие новой парадигмы


Скачать книгу

их для последующих операций в формуле.

      Оператор Адамара $H^ {n} $ для системы из $n$ кубитов

      Определение оператора Адамара ($H^ {n} $) для системы из $n$ кубитов в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $:

      Оператор Адамара $H^ {n} $ применяется ко всем $n$ кубитам в системе и приводит каждый кубит в равновероятное суперпозиционное состояние.

      Математически, оператор Адамара для системы из $n$ кубитов ($H^ {n} $) задается следующим выражением:

      $$H^ {n} = \frac {1} {\sqrt {2^n}} \sum_ {\boldsymbol {y}} (-1) ^ {\boldsymbol {x} \cdot \boldsymbol {y}} |\boldsymbol {y} \rangle,$$

      где:

      – $\boldsymbol {y} $ – битовые строки длины $n$.

      – $\boldsymbol {x} \cdot \boldsymbol {y} $ – скалярное произведение битовых строк $\boldsymbol {x} $ и $\boldsymbol {y} $.

      – $|\boldsymbol {y} \rangle$ – состояние кубитов, соответствующее битовой строке $\boldsymbol {y} $.

      Оператор Адамара $H^ {n} $ применяется к каждому кубиту в системе и приводит его в равновероятное суперпозиционное состояние $\frac {1} {\sqrt {2}} (|0\rangle + |1\rangle) $. Это значит, что каждый кубит имеет вероятность 1/2 быть измеренным в состоянии $|0\rangle$ и вероятность 1/2 быть измеренным в состоянии $|1\rangle$.

      Оператор Адамара является важным элементом формулы $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ и используется для преобразования состояний кубитов в начальной и конечной стадиях формулы. Он создает начальное состояние системы кубитов и играет важную роль в обработке и манипуляции с квантовой информацией.

      Описание оператора Адамара в виде суммы последовательностей битовых строк

      Оператор Адамара ($H^ {n} $) для системы из $n$ кубитов можно также представить в виде суммы последовательностей битовых строк.

      Математически, оператор Адамара $H^ {n} $ может быть записан следующим образом:

      $$H^ {n} = \frac {1} {\sqrt {2^ {n}}} \sum_ {\boldsymbol {y}} (-1) ^ {\boldsymbol {x} \cdot \boldsymbol {y}} |\boldsymbol {y} \rangle,$$

      где:

      – $\boldsymbol {y} $ – битовые строки длины $n$.

      – $\boldsymbol {x} \cdot \boldsymbol {y} $ – скалярное произведение битовых строк $\boldsymbol {x} $ и $\boldsymbol {y} $.

      – $|\boldsymbol {y} \rangle$ – состояние кубитов, соответствующее битовой строке $\boldsymbol {y} $.

      Оператор Адамара выражается в виде суммы последовательностей битовых строк и может быть представлен следующим образом:

      $$H^ {n} = \frac {1} {\sqrt {2^n}} \sum_ {\boldsymbol {y}} (-1) ^ {\boldsymbol {x} \cdot \boldsymbol {y}} |\boldsymbol {y} \rangle,$$

      где каждая битовая строка $\boldsymbol {y} $ пробегает все возможные комбинации подходящего размера $n$. Значение $ (-1) ^ {\boldsymbol {x} \cdot \boldsymbol {y}} $ вносит фазовый фактор в каждый элемент суперпозиции.

      Оператор Адамара $H^ {n} $ применяется к каждому кубиту в системе, преобразуя его в состояние с равными вероятностями $|0\rangle$ и $|1\rangle$. Это обеспечивает создание равновероятных суперпозиций в системе из $n$ кубитов.

      Определение операции сложения по модулю 2

      Определение операции сложения по модулю 2 в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $:

      Операция сложения по модулю 2 $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$ выполняется побитово для каждого бита входного вектора $\boldsymbol {x} $ и соответствующего ему бита вектора $\boldsymbol {p} $. Результат этой операции используется для изменения состояния каждого кубита в системе.

      Входные данные $\boldsymbol {x} $ представлены в виде битовой последовательности, где каждый бит принимает значение 0 или 1. Вектор $\boldsymbol {p} $ также представляет собой битовую последовательность той же длины.

      Операция