сейчас, оставив в стороне интеллектуальную метафизику{88}, мы уделим внимание двум вопросам: предпосылкам возникновения сверхразума и последствиям этого явления.
Согласно нашему определению, шахматная программа Deep Fritz не является сверхинтеллектуальной, поскольку «сильна» лишь в очень узкой – игра в шахматы – области. И тем не менее очень важно, чтобы сверхразум имел свои предметные специализации. Поэтому каждый раз, когда речь зайдет о том или ином сверхинтеллектуальном поведении, ограниченном предметной областью, я буду отдельно оговаривать его конкретную сферу деятельности. Например, искусственный интеллект, значительно превышающий умственные способности человека в сферах программирования и конструирования, получит название инженерного сверхинтеллекта. Но для обозначения систем, в целом превосходящих общий уровень человеческого интеллекта – если не указано иное, – остается термин сверхразум.
Как мы достигнем того времени, когда окажется возможным его появление? Какой путь выберем? Давайте рассмотрим некоторые возможные варианты.
Искусственный интеллект
Дорогой читатель, не стоит ожидать от этой главы концептуальной разработки вопроса, как создать универсальный, или сильный, искусственный интеллект. Проекта по его программированию просто не существует. Но даже будь я счастливым обладателем такого плана, то, безусловно, не стал бы обнародовать его в своей книге. (Если причины этого пока не очевидны, надеюсь, в последующих главах мне удастся недвусмысленно разъяснить собственную позицию.)
Однако уже сегодня можно распознать некоторые обязательные характеристики, присущие подобной интеллектуальной системе. Совершенно очевидно, что способность к обучению как неотъемлемое свойство ядра системы должна закладываться при проектировании, а не добавляться в качестве запоздалого соображения позднее в виде расширения. То же самое касается способности эффективно работать с неопределенной и вероятностной информациями. Скорее всего, среди основных модулей современного ИИ должны быть средства извлечения полезной информации из данных от внешних и внутренних датчиков и преобразования полученных концепций в гибкие комбинаторные представления для дальнейшего использования в мыслительных процессах, основанных на логике и интуиции.
Первые системы классического искусственного интеллекта по преимуществу не были нацелены на обучение, работу в условиях неопределенности и формирование концепций – вероятно, из-за того, что в те времена были недостаточно развиты соответствующие методы анализа. Нельзя сказать, что все базовые идеи ИИ являются принципиально новаторскими. Например, мысль использовать обучение как средство развития простой системы и доведения ее до человеческого уровня была высказана еще Аланом Тьюрингом в 1950 году в статье «Вычислительная техника и интеллект», где он изложил свою концепцию «машина-ребенок»:
Почему бы нам,