информационный шум от обилия доступных товаров совершенно забил бы небольшие массивы актуальных данных. По мере эволюционирования искусственного интеллекта научные и коммерческие организации разрабатывают новые приемы и методы: от повторного использования данных в системе и активного обучения (система сама подсказывает, какие данные ей для этого необходимы) до синтетических данных, которые создаются, когда реальных не существует. Размеры, форматы, источники и способы применения данных меняются, и в ходе этого процесса предприниматели получают ценный опыт и дополнительное пространство для маневров на рынке.
• Экспертное знание. Разворот к человеку в сфере «умных» технологий в корне меняет многие представления о роли людей и накопленного ими опыта в новых цифровых экосистемах. Здесь мы наблюдаем один из наиболее значительных сдвигов: от машинного обучения путем обработки огромных массивов данных до наставничества, когда машина обучается под руководством человека с его знанием, опытом и чутьем. Человек обучает машину не «снизу вверх» (от частного к общему), а «сверху вниз», прививая чисто искусственной системе элементы живого природного интеллекта. Например, в компании Royal Dutch Shell инженер или другой штатный специалист дополняют базовый уровень машинного обучения еще одной высокоуровневой программой. Такой метод резко сокращает время на обучение системы правильным действиям при внезапной смене внешних условий. Корпорация Tesla обучает автомобильные бортовые компьютеры с функцией автопилота на примере сотен тысяч водителей. Торговая интернет-платформа Etsy разработала систему рекомендаций и подсказок на основе эстетических категорий, для чего экспертам пришлось обучить искусственный интеллект субъективным представлениям о стиле. Оказавшись в роли наставников машины, специалисты любого уровня и профиля находят накопленному опыту новое применение и, в свою очередь, помогают творчески использовать «умные» инструменты.
• Архитектура. Раз уж в наши дни все компании поневоле становятся технологическими, то и цифровая архитектура приобретает особое значение. Привычный IT-набор включает в себя софт, аппаратное обеспечение, телекоммуникации, специальные помещения и центры обработки данных. Но такой комплект в сегодняшнем гиперцифровом мире мобильных вычислений, ИИ-приложений, интернета вещей (IoT) и миллиардов устройств попросту не может функционировать, так как не способен поддержать радикальный разворот к человеку в сфере искусственного интеллекта, данных и экспертного знания, который меняет и темп, и условия инновации. Вместо жесткого привычного набора передовые компании создают «живые системы» – гибкие, трансграничные и радикально очеловеченные архитектуры, придающие элегантную простоту взаимодействию людей с машинами. В качестве примера отлично подходит компания Epic Games, разработчик игрового движка Unreal Engine. Его гибкая многофункциональная архитектура