Алексей Кондратенко

Супергерои. Нола


Скачать книгу

описаны в научных трудах Вячеслава Муханова и Г. В. Чибисова, затем у Стивена Хокинга, Алексея Старобинского, Алана Гута и Со-Йонг Пи.

      7

      Фрактал – сложная самопвторяющаяся фигура, как правило, копирующая себя бесконечное число раз в разном масштабе. Фракталы распространены в природе. Существуют закономерности в строении макроструктур и микроструктур вселенной, которые можно описать с помощью математических формул фракталов. Подробнее об этом рассказал Бенуа Мандельброт в книге «Фрактальная геометрия природы». Отсюда так же получила развитие научная концепция «Бесконечной вложенности вселенной».

      8

      Космологическая гипотеза, в соответствии с законами термодинамики, предрекающая полное рассеяние всех существующих энергий.

/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIBAAC1AMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+gEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APLUiO8cd+wr6nlPkpVLGpYLDHBPJLKI2VcxqVLbzkcAjgYHPNaRR5uIXOavhq+uIL0XlrIYpojlZFyCOCM8/U9KTR52IpysrFjxS8ieEd9uCfNk2z7QTtBJJJPbJA/A1E9B4ChKWJTf9aHOzatf6pbajYTXR8kwxyRQknaPs67VVRnGQhfHsD3Oa5oqx9TynN9Tgc+nvRM66UQgRJLiKF5YrcSOEaWTJSMEgFmwCcDOTgE4BrKTtqdCTjJI+2WNj8Ofhvo3h3w9Kk880YjtJ/vB8jfLcsRwQN2RzyWQV51OEq1Q0xFaOGpP+up474Q1SGPWdR+GuvzE+VcSPoF9cH5h5jFxE5PVXzlSOj5A64HfL/Z58yPFxWDjmFBR6rb5v5diGe2kguWgkUxywkxmNsAqff19iOMcjivVjUUtUfLVac6c+R7kqkLjJ5ByRj73Tn8armsc0ouK8y+8imMPJIqhztLM20YPA+n40W5jkUG35k13pwsY/PkePa2drBjwRng9iSAccngetEKnN7rKrXUbvqYT3yxtkYJzk4OAM/T+VdEYNaM4rzfusa1w0nygFcjk5zx6EEVpy2JTLVjmN9wJO44zjgfjSYORrwyrGjRsoKSAd/fr068daw5eY0TM29m3TNGjNsVdu7Gd3I6cdOK6qS5TKbI4flJDHGM+uR3HX8P0rS4qeu51GjM8Jtrlc/Mm2Qg/e45zjj6e9efXSuelQm47EmpOwvZyAcHDA8dCAe3bOR+GKqjZQsXNtytEzblNrBgQVkJIAHPPU4/XP0FbQk4o55JKViRIZGQlFZwv3SMsOuCO3vT5+XQpR5tRx+UYJ6Ebto6kngfj7e1O1tSuVS0JkcoATnPYZ9c9yOvX8Pzqbo0irE9xyd4frx0IIHB+p5/rS5S2+YhBBUr6HsOAM47j0z/+rmmJArgfMX6Hk9Acnrx9fX0qWNslJYoGZiGzk+p556dDyDQXzArc7RkYPGQfz/Q/41I7jg7FjgjJGRnp6cds96Y7j1fIO7AGc5ByAPfH+FSO5PAVZ1DMCueR68Zx6+nWlY0uSeb/ALWVz09e/wCPH5UWC4+KMSRmQntkdicDoe2aT3LjsRqzN8y9AeuORwOD2Hp09Kb2JW5cicDaoycHnHGOO4rPdG6lZj7tx5YjDDOR1P1z+FKC1HOegkbn7G2SABkjI6Huex607Di9BbE5frjg/eOcHt9M/jU1NgpvUs+byRjByAOf1/z+FZqPum8WWpJl8s9Tkdv5D8KwjDU1UhsTCN0BGCCOvQjPH4GrerHayI+khXJIUnBPPOT1+nrV7GaI5Mq5Xp06D8f5VrDVGbbTDdkAHk5GD0P4HvxU6JltOSFRhndnnPXgH6/lmlJXBTsy6sgxkg8AHn/Pp/OuaSsdN7okWXLDeQQMnA4x6moUC3MhnmL/ACqSoxnOf5n0rRQMZTImdYzuJBOMD1Pt7f4VUY3M72KkkjuPmOCDxgcKf19/1roiuUwm7hEh3b2UrzxnGcH+VTKQRiWoUwSSSOMkk5/Dn0xWM3oaRQkrMikjJY85OM/5xU2u9RSKxMzuFwznP8IycDr0HuK2tBLUycWyRYmgYmVSrNwuTjIOOBnvWdStCRo6TpboztYVRcrJzlgAQR6ccn8Aa68PY4Ksoy6FDJK+hz3Hbp9O4OO+eK6HHU5m7kcYJK4B9CByc5PIP156/lTnqhLQujAY9ORyxGNx6fkeffGKxlq9TXZcr1ILtXJ6GPJ4I6E9MDH61pGVvgMpqNrS2KnyqABgkkAjPB/yDnHpWq5jK8ehBOQJTtxgE4wSffAFVtuYy0HW7gIHbbkkkjk54xjHbrzn8KTbi3cqE1y8p0+l6JbSXMT6lMBG/SNW5bjIyR0GcdOee1eRXxcknyn0WX5dh3Lmrfr59mP1my0u1S43RwQwBSFAOG3HOAAe/T+vU1OGqzmznzPC4elL3P18jhIHKTBypJZcMVU9RxkD6gfrXu8t46nzTn7+hPKW2+oHyjB4/wA8nms1oaS12IPM8nKd+/HJ9M8enNDjzEQaT1O38PXu3SJED/dcYGQccDP4e1eHicO5VD6zBY5Qw3LH+tShqfiBZB5YclVHUHgk9cdjWscKepRzZKHv/wBfgc5qFwk5JYnbjChc8nPf2rvpw5TycRiFVWpg3g5JQgANyvXk9f04xXTBnz1ePK9AmhkbSYbhwPLMhVMk5PHX9CPY4octTmg2ivDIFO0oWHTJ6jjGR79aJK6PQoV7FiCAs4MLbwvUt/Dz39R7/lWDPTjUii9FYx+SSu3c3BwOD9OcjrU8wlHnYiW8znyo1JIOeFwRn1J/T6d6anc83EUbO/UkuLlY41treQMRw7A8E9wD+Byf54oauY0qT5uaZG+1FzgADjOTxgdM+nTtUo7uZt+6OhkO35Rk5+UgcE+5qZGjjde8Sz3ESnfLIkbEADLf06/iBSauZ+xk9g/tywLhdk/ykAsEx6c4JHaocCoYST3N/QksdTx/Zt8zzgEvDKoVvc4PUdORn8K4cReO+x7GDy+c9KUrv+u7NCRb1QLW5Ekak4yRkdMdfYe/WuJ2Xw7HqKNel7k1Z/I0dIsmeKSIEksCR8uSB2/l+tcVTEKMz6LCZVOpTv8A1+Zl65bSx2pUxFCJFJyPTPT1rqpVVUZwU6NWjV5au3y/QwboSSPHuHGMDJ4Jz0NVONzppe4xggntTHeeS4iyygkYWTB6A98DP6Vko2NKz50d7os10+nRNYt5kBHG48r/ALP4V6keSx4jhK58rMhZtsSZGcZxxXYzy0+ZixxqqsXIZw3QEd+xJoTNJU9C9ok/l3IDBiCpXbjIzwAPzwKo8/F04yjqHjZJ4IWgZHhHmqwUMSGBB564PcexBzWVVFZQoqV1/W5zmmXIstVjvyS5ilztI3B0OQwOfVSR+NcikfSWI9X06Ww1OeyZHTyn2jJySuAVOQT1Ug8HHNJnVTKgiwMnOB0wKykrRN4M9y+Ac9z4j07+xfNkmvrFlii3yFilq2SoXJO1UcNkDAw65zgYqnKNCPMcGNw8qlRRPbfHvwt0DxJ4XhtBss9UsE3WephcPGw5O45+ZMjJB6dRggV5vtm58zPTjQjSg4x6HkWlX0fizQxMzKdas5Da3aKDmV1LEEAgH5wrMvTkOmB8ld+Fr+xldniZll7qRVSP9beZRAKoCxCoBkswwuPr09K9eC5j5Gq0/Upw7tS1KOAMdgyemQFHJx05JwBn1HrW1uU4qs1D1Ow0GXT76e48P6vOkLXMY8iZ8bVkVsqM5BBweAeOcHsDx13yv2iOjLqTqJ0qnXZ/e9jC8T6FPod+YZ4gM5KODkHryDjHPB/T2rrwuKVdaHFi8FUwk/Zz+/8A4BVtohhhsBbcByOvp1reUjjcS/BFGqsV4LDgDnB44Pc8+/asXIlIRnIV0XGANjcHnsSeffGPp1rSOgkZwAHDAg9iD9CCP15966FqSx6kZ+UEZGOf1+hyRx2xxRuG+xuaDqUEKC2uiRCrbtyg8ZIzwBj1xXFWoNnfhaqhudrcaPFPH9utxvWVBgqAQe4IP0x7/rXlxxLjOx9NWyx1oe1pbf0urOW1aGQHaCflPy5yM4zwR2GK9bD1lJ2Pnq8FFeZHpt35ICEbgQeuQRz79+uR0/rpON1cmEve5Tcu7Kf7GlzFCskMg3ZTkc9CPqT1rihX5pWPSlgny8xMLWP+zFtzGqsVBzgZLYJySMd/wqfaPmIVO6MGSUoiRbjwRnoePQHtj1z/AIV3cr5TkTsyNHONwGQCSSRwO5wD65647UxJjtw2Y4AXO0EAAZ455zwcmpY2XpF/0VWDYGByRyPz5I/oPwqTZorknGDkrkZyTjjB79R05+tUQ2OVyASNvX7wGcdAT9Of/wBdSVclHyuAcgZOeMcY44/T+dMdwjkO0sMA54B569ux/wA8UrFXJFcPlTlhjJwSOPXj/PB+tFirlq2cC3bGM7TwMZ+me/Ws3uWmR2wyzBTnaeoHHoM+n19qt7Ciyd5WRRuycH8fp/8AXqUtDSejIhIGYOrYJGB3A68Zz9cD60LQlvQsI2yE4OBt69wT35/l9ak2i9BYH2ggHkgAk845HQDiia0Jg9SSJyzDnvg+tRLQ1jIsM4aZUHOGGDx3HI/X6VNjZSNCcBBvIB2+nt1z/iMdq5ITuzpnoijAQ5MjZwM5A6DvkfofxFdMtjCD1GwhpJhGGHJwckdDznFVJ8qJjJSZrweTGogUKRjBDYyfUnNefJykzvjFJFTVLYRYkhHB6qDwp/Ht/jW1GrzGOIo8hWim2sAeQSCcHB6dPzrplC5hGdh81wpbaDkHqSMD2H06Z+hrNQLcxGk8o8MCwOAOx5PJz+f8qtQM+cglbknHcZGMe46c/wD16tR5SGxY0GM46HjH48/0/wAmlKVxqNy7FBvJLlhgcr7d8+ormlU1No0wCMXCxc5GccHB6/5NJz0LjRL9ppyhvMuED46KTk/U/wCe9clXEdj1KOAS+ItoLeHhUVBg8AcAewxXNLnnsdjeGpbr8ypJrFkzbVjkbjglRjpx1P8ATit4YSaOKpmVK2i/r7jLvRFebsxFTj5SeCM46diPr/Ku2DcDw8S41nsYd/ayWpLc7D3z164HPTPX+VehRqc6POq0+US1hRomdsAD1IGMDknp6ZApynZkQjzD5ZopIIpkClgdrZIyCDwSDwO+D3qIxaXKynNRXumpput6Hc20cF/apFJ93zNgIYc/MSOnvXDWwWIg+aH6Hu4fH4GtT5Kqs/n+iK3iC10xI/PsniIUjbsYEHP4nGAPx963wsqzev6HmZlSor+H+vkcm5IcttOCSTznr9ePXt2zXrLbU8KXu/EEO58KrEkjb97AGT0z245+mfWm9Ze8KMkkmakerq80azI29eBhsAkYz9ASO3FcboRknynU8S20pFLWWkknMtxIZC33e+AegA6d/qe9a0FBbGGIleWpmz5SfIT05H4cD2H610/EcTfvaE2nzxm5CyrgcnHYEc+2fTPPb0rOorGlGVtGbUWi/wBqPuVgETO6Tv0+6AMA5yMknHpXFPEch6VLL3iNv6/Erao8mnw3FvA2CRnOecdCR+Hpzx+NXR/eSOabdD3UVvDlkdRE888m23gwDkY3McgAd8DGfxFPEVPZyN6F61PUydYVrS+eFSdoOQCQODyASPyNb0veOeVdy2KWNz44GT24PHXt79a05bMjn7mpA8cuitYuOVbKsOMHPU9u54rK2pk5Kxz1xG0TlTlTk59Dnp/+v+ddCWgU56k1tc/Z02jIMhy2T2zwOvP8vrWEonauZF+OVmPykjackkcgY6/Xpx9fSsXA7MPW5dy+14DEYY8LtHzMTgE+hPbrUNWOinFOd5lTyFXJjBBzyQeR6gfTt+dCnYc6N536DthAZjkJks2B0Hp+XPv+VIhJN+6U7q8JcC3BCjjeRgk4x07fjQdscPzL3it5MszFgjMx6nOTjJ5ye/8ATt6K50QUaS1LC6XO6Zcxq2PlJbJAz0478DPTvU8xz1MTFvQSHTdRiuEnguYoXjYFXVmynowIAx9PcjmsptSjaWxdPFuM+aO56xbzG4sYvt4UTlBuI6E4646jOc47Z714FSLhLTY+to1Y4iF6jsyWK5ntDHN5K7EOZT3257fhk1wVaLkz6XA47lp8s9y1rsdpe2pEb5MnOB2PXJ9MelZ0ZunM6cbhva0rxOJurSUFosEMMgnBAGOc+1e1TlzHylaVipMybDEzu7htsYz8ikjv7f4j0oqaBCWhPYnUYbZVtrho0PJXHQ9651SnYtyjc8wuPCOuGJTLBHbxEZChwCa+o9g2fGvGU0Vn8L3SA+ayRITnB6j0wOvT1p+zcTN4uMimLKK2uAfPLMG4x1qZbik+enY0PFE8l/bwNBbr5wU5DKCAdx9euRn6VMkYZbD2c7/11MOw0e5SOWMRJKHUB/kDMADn5SR8vviuf2Vj6WniET69Zia5MojaBFjVdsjlyAoAALHrgAAewFS4G/1g5+VERtowx+lLlEqxt/D3xLqXg3xZZ+ILDJ8ptk8R4E0RI3xn6gZB7EA9qxrULo3pVz2/49fFjT9T8EW+j+D71pn1eItdTISGt4jwYm7q7HgjqFB7EGuDC4ZwZ04vFRlGx5Ra6pNofi37esOLa5hie6jiyHmjkRHJHo6vhkPUMo967alK5ywrpxsdx4s003tmuvW1ws0LGP7T5edmWGY5lXoqSZOR/C+5fp04PE291ng5ll917Wn/AFt5mZpcBtrNpdx3MONh5AB4GfUk+npXfOV9GfL1KF3Zj4ofMk2tzwWOR9O/1pppKweze0jqLSCfUNHktbhpGS1j3QgkkoSRwD2BweOnB964+dU3c0hTqVocr2j+pz86tZTGNwWwx78dOo/DvXcrSOKox0V7Gx2hdq7c88k9xx7c80OlY5my7HEJSZUQkEEk4wcZ9PYjsKy