Майкл Брукс

Искусство большего. Как математика создала цивилизацию


Скачать книгу

и знаменатель на 13. Сложим числители. 96 + 91 = 187, а значит, в сумме дроби дают 187/104. Это приблизительно 1,8, что ближе всего к 2.

      23

      Последовательность Фибоначчи начинается с 0 и 1, а каждое следующее число в ней получается путем сложения двух предыдущих. Первые 12 чисел таковы: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и 89.

      24

      Pascal B. Pensées, www.gutenberg.org/files/18269/18269-h/18269-h.htm. Перевод Ю. Гинзбург.

      25

      Wallis J. A Treatise of Algebra, Both Historical and Practical. Philosophical Transactions of the Royal Society of London. 15, no. 173 (1685): 1095–1106.

      26

      Seife C. Zero: The Biography of a Dangerous Idea. New York: Viking, 2000.

      27

      Перевод цитируется по изданию: Мухаммад ибн Муса ал-Хорезми. Математические трактаты. Ташкент: Издательство “Фан” Узбекской ССР, 1983.

      28

      Kaplan R. The Nothing That Is: a natural history of zero. Oxford: Oxford University Press, 2000.

      29

      Physics by Aristotle, http://classics.mit.edu/Aristotle/physics.html.

      30

      Weng J. et al. The effects of long-term abacus training on topological properties of brain functional networks. Scientific Reports. 7, no. 1 (2017): 8862.

      31

      Goldthwaite R. The practice and culture of accounting in Renaissance Florence. Enterprise & Society. 16, no. 3 (2015): 611–47.

      32

      Gleeson-White J. Double Entry: how the merchants of Venice created modern finance. New York: W. W. Norton & Co, 2012.

      33

      Schemmen M. The Rules of Double-Entry Bookkeeping (a Translation of Particularis de Computis et Scripturis). IICPA Publications, 1494. “Сумма” Пачоли цитируется в переводе Э. Вальденберга.

/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAWgAA/+4ADkFkb2JlAGTAAAAAAf/bAIQAAQEBAQEBAQEBAQIBAQECAgIBAQICAgICAgICAgMCAwMDAwIDAwQEBAQEAwUFBQUFBQcHBwcHCAgICAgICAgICAEBAQECAgIFAwMFBwUEBQcICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgI/8AAEQgASgEUAwERAAIRAQMRAf/EALAAAQEBAAMAAwADAAAAAAAAAAAKCQYHCAMEBQECCwEBAQEBAAAAAAAAAAAAAAAAAAECAxAAAAQEAwEGDg0HCAsAAAAAAQIDBAAFBgcRCAkSIRMUNjkKMSKTNBU1tdW2Fzd3WRpBYTJiIzNzdHUWdrc6UbFCUmO0h3FTw2QlGDgZgaGCwkOzJIWGlicRAQABAwMEAwEBAQEAAAAAAAABETECQTIDUWFxEiHRE4GhIsH/2gAMAwEAAhEDEQA/APRWjHps0Tn8ypX0vRX2Y68Fub2yG59X0zRFwKXuFO2BZS2lzGWvWagMzqHTUMms7OJgEwbQYBiXDGOk5LLW/QqzsX+vcyzbZOc2lWDcTMLkQrBSmZpc9QgJuqjkijx9L2zl1gAbaxFZaqG+D0xyGIJ8T7RjZkyj/W/8ZQgEAgEAgEAgEAgJh9e+b3YzP3xyYaYmX6t5pRNc3QTq25Nwp5J3izRw2lNK09MCy1JUzZRM+9uVyOC7IjgJikH8kbxWJp8veuhFmif5qdM3L/UVTTJxMriWqbuKBuSs8VMs9GZ0ocGKSjgygicVVmYt1TifdETDjuxmTKKS2DiIQCAQCAQCAQCAQGF2u9nkvJlPsRZiz+WealprMfnQrJnQduK1EpTKSFs4Oii8fNwMBgBwB3aCKRsB2N8E4dMUI1jC4w+K0WgblwtlNLW3IfZgrzVFmComYymcVnebxjz5B1VD1i5I7coPG++HIVm5MBimTIIH2BwFQRxEb7pLdaMBAIBAIBAfQmoiEsmIgOAggtgIfJjBJQG6cWWLJhmKyX5gb55sc/1YWAvZRlXVuypmZI3eLJ1JdK5SxbOmboknfLHWcYKqqBgXdUw2S9MEday1l8S75/vaasfq6njQ7N1h4wvGH9X/AB58Gf8A128Tm849mN83rhXX3/ScLx3zeOm3z9OM/P8AWqY+3Z6c5vTnSyk5X8h2YwuYLMhRlpJlLbyVvNFaanVQy1nOVWB5ZJkiLIS46vC1yqHTMQm9JGExgEAxEMITCZO4ubvUXVF2Lu6mGpBMKeeU1brOPcNcLJpPEDtlJhJJbN5rMFHhSH3RIIv0kdrob4moAD0oxJMtI6KioyyQCAQCAQCAQCAQEXdm2moHn01Xc/OfLITWtt6akljnxLL0RVFw2E2mTRSUywCcJ7FElyagFMoq0FdRQRDpXAAAYGGNtfFP9du6GLi8eSjUq1AdOLMo9kZK3uWVpdmlFKdTdIU68mDwE3MwGUkdFIYqJ28ySAEzFAS8GMXdAsSTK0T/ABXPGWSAQCAQCAQCAQCAmJ5yva6t5bR2RjO/StMu6upvJBc1jP7pytkmZZZvI3cwlj4HhiBuAkmvKiJHOIgBRVKI4BiIaxaw6dWz9M6j+Q+rLb0PdiVZtKCTou4qsubUs7c1NKWzlV9NFiNkGajVZcq6TgFFAIokcgGIOO0AAAjD1ll7XjIQCAQCAQH0Jr2rmXzdb/ljBJQiaPtjtGCvsml86u1C1bXsrpsbh1qgaZVPVicmqdKnk2rIyBmrVKYIODFKodUUTJJCYTYgGIhhG5bymas9P74mb3/Lm8X/AI3rh/5d394T6peOLfpp2e8W3At+7C8P2d/4JvHwnB9rZ334HDZ+Di1a9f8AqmtP9XYNtHnS7bTcJ6GRW3LmZgsZwZdzT7Z2Q6xj74Jjput8IfERx6Yoxj2c6y0QkciklMSeWU7TUmaU9T8lRTbSaRMW6LRm0bpFAhEkUW5SETIUAwKUoAAB0Ig/VgEAgEAgEAgEAgPjWRTcIqoLF20lymIqXEQxKYNkQxDAegMB0rYXLbYfK9SEwoHL3auT2ko6bTFxN5pIJM2Bsg5mbpNJFZypumEyhyIkKJhHoFCLM1H0prlcy9Tu/lP5pJpaOTO8w9Ky80pp+74ttmdtpaZJwgLYq5DAIpiR0qXZEB3DDCo77iBAIBAIBAIBAIBAfQmkrlk8lswks6lyE4k82RVbTWUukU3DZy3XIKaiSqSoGKchyiIGKYBAQHAYDPemdIzTMo64KF0abySW+ltatHPDGMwCRoqtm7oDioCqLJcTtUzFMOJRIkGA9DDCL7FZaLAAFAClDZKXcKUNwAAIg/mAQCAQCA/oomRZNRJUu2mqUSqEHoCUwYCEBmqGjfpa8PGZqZFLdOXp1TLKqLyFFcp1DGE4iciwmKbERxEDAIRfZay9t+I6y/iv8SXikprxN8F4F4qewcs+rnBNrb3nsdvPB9ja6bDY6O70YVlKMnNQPWUlGQ7OZljyhP7COrku8yQSDgddI1AjLUpUM9qg9NAB2p2LgVd6Em+DgoXHHDc6MWMVjGZiezbWMoQCAxa1e9YaUaT5bAmm1h3d7AvqeoyIC1nyEk7Gmp/sbjtb8zd75v3ZHcw2dnZ3ccYrWOMzZsdT81CeyGSTsEODBOGjZ0DYTbW98IRKts7WAY4bWGOEJhmH68QIDMDVf1KJdpc5e6Tv3NLSL3ja1PVTKmBptvN0pMdAzyWvpgDgVlWrsDAXgWzsAT9LHHcixC441mj2FlWvmjmcy2WJzEtqbPRze9tKySp0KUUcleKS4k5YJvgbmXImkCgpgpsiYCBjhjgEJR37ECA8L6kGddlp6ZRriZrJhb1a6TS37mRt1aLQmJJUq57NTptJwMDlRByBd7FztiGwOIBhFiFiKzR+rp6ZxGuffKNarNYxoJW2TS6ATYyFFrPyTNVmErnTuT7rlNFuB984Lth0gYY4exCYSYo9pxAgPOmbrMChlTyxX1zJOqYPWjayVMzSo16TTdFZHmBJY3FwKBVzJrAmJ8MNoSGw/JFiB5f0q9RWX6neWqa5i5Zapez7WW1RM6bLSzibJzhRQZazZOhcb+m2aAAH4Xs7OxubOOO7CYWYpNGlcRCA4jcCqi0JQdbVuZiMzLRsomU1NLQUBIXAS5mo73oDiU2zt73hjgOGPQixFZSZZS6QurXKtV6kL2VbKbIubLI2cmUnlyrNzPEp2Z+abNXLnbAyTNnvYJ8HwwEBxx9jCDWWMxNJbEREIBAYl6Z+spKNRnMXmUy/S+wjm1TjLom4O8qdeoEpsSaGQnqkkwIgmxailiKYnxE5vye3GphZiYp3baRlCAQGJOXvWVlF+tUO9GmkhYNzTM0s6rVKbi7R6gSdIPi00qkniVgVimZPft9AcBWHZ9uNUWk0q22jKEAgMSLmay0otxqxUPpbK2DdTWa1qtJUkbxlqBFJugE3p4Z9tDLhYmMbewKKeG/hj0dzoRqi+s0q23jKIc+cPctRpafw/wDvSVjcaOmG2fC4yMOZAICJTni3xOnv86uN+amoaO3DdZ7b/iFRH0RLf3JOLldwxs5dEUgJaOdt8nPavzrSPwcncXR04tzZbSi5M7IX5p6G8H20Jc5u0BiBAYOc5W5HzMj9JUN4bSuLDfHuhy7m63I/ZSvkqr8M5tCUz3S21iMkBm9rB8lvn182FV9zTxYWLwyy5p5yY1S+dGqO5MmhNmuTdKm6IwQHUOYPyCXv+yFS9xXMawumVkl3M6vIvne+1FH9ypjE0dubcsviORAICHTmw/KR6nvyL/w8cxvLXy3naPC4uMMEAgIcdO78VLnd+Xun+8so23OyPP2uOjDBAICG/M/+LlsL85ov7vFY06Rsnz9LkIy5oc+cPctRpafw/wDvSVjcaOmG2fC26pappijJO6qGsKjYUpIGWyDyeTJ43Ys0ROYCF21nRyELiIgAYjujGIhzq/WZvGkwaNX7B0m+YvkyLMnqJyqorIqlA5DkOQRAxTAICAgOAhAfhGrSjiVQnQ56slhK1Wbi7Ro8X7UJodqGOKwNBPvophh7rZw9uLRKoueeLfE6e/zq435qaiaO/DdZZSk2lUhthS05nkzbyaTyySS9aYzV2sm3bN0iMkxMdRVYSlIUA6IiIBGpu4RZyqRz2R1NKWM/puctKhkU0JvssnTFwi7aOExEQ20lm5jkOXEOiURCMzCvzpnWtGySeyWl5zVsslFTVJt/V2nXT9q3fv8Ae/dcGbqnKors+zsFHCLRKpjudt8nPavzrSPwcncNHXi3NhdLibSqQ6XmRiczyZt5NJ5ZaKiFplNXaybds3RJTzYTHUVWEpSFAOiIiAQlzm737I57I6nlLCf03OWlQyKaEBWWTpi4RdtHKYiIbaSzcxyHLiHRKIhEH50zrWjZJPZLS85q2WSipak2vq7Trp+1bvn+x7rgzdU5VFcPZ2CjhFolWIXOVuR8zI/SVDeG0rhDpx7ocv5uuAho/ZSREMAMjVYl9sPrpNghKZ3ltpEZIDN/WCAR0uM+uAY//MKr/wBUtUGLCxeGWXNPCiGmJUhhAQKN0apwH2BwlMmhNmuTdKm2IwQHUOYIBGwt7gAMRGkKlwD/ALM5jWF0ysku5nV5F8732oo/uTMYmjtzbll8RyIBAQ682HAQ1I9T3EOgi/Af/fHUby18t52jwuKjDBAICHLTuAfWpc7250F7piP8nCWUbbnZHn7XGxhggEBDfmg/FyWE+c0Z93isadI2T5+lyEZc0OfOHuWo0tP4f/ekrG40dMNs+G3+vLpp381MctluLd5fLhyylqptvUozx/R09ePWMmqBBVkdkAKLs0XOyu2E4nR20xKOJgxKIgMZZwypNXtDS9ymXAyO5GbE5Y7oXDLc2t7bMnpJ1UCKjhVigZ/NHMyIxZGdlKoLVmRcEEhMUOlLuFKGBQSkzWWGtWaEGbae63DPUFaZgpQhY0K3Z10aZi9mYVc1btRJjTibTg5kRQMmTgoKb+BODiICXHpRtWvf/mjy3zxb4nT3+dXG/NTUZ0b4bt8tU3JBdfUI03j5c7L3Ba0BXkxTpaby8Zis6bymcklSBVjS18qzTWUIiqJgOBgTMAKEJiGGIhqby44TSkvh0SNP68WnBkvSsTfC4jSua2nNSTOo1pTK13DqTU6lMW7VDseyWdJIHULttzLqG2CgKihsAEOmGS1llWasutTzQjzaZz9Ty32b211/ZPS9rTGpQZu6mL2ZoVBRgUwKQmCToNW6ia2+mTMulgqlsrHNtYB0w2q450iYcr52yUS6ctqCiYTiW6sjATj0Rwpyd7o4RNDi3Oz6vyQ3W1B+b0ZR8uVmLgNKAryZ25tfN5caZLOm8pnBJTJUFjS18qyTWUIksJgOBt7OAKEJiGGIhUiaZVey9EjT+vFpwZMErE3wuGzritpzUczqJWUypdw6k1PJTFBsjwBms6SROcBM3MsobYKUVFDYAPuhkmWVZqy51QtCLNpnU1OqAzd2tv7J6Vtap9VOy7p+9mTeoKL+rG87XYdBq2UTW306ZnCXwqeysc21gHTDYlcc6RMPcXOVgw0e8yAY44TGht3/AM2lcSDj3Ql/08dAbNpnNyg2jzIW0z0oWjoy4pJqeUW8MSphNLux87dytQBFg7SR+EO3Mp0hf0t3dxi21bz5IrZ7V9Vkz3+kxb9TrLvhD27s/pHSD1WTPf6TFv1Osu+EPbufpHSHnPN3zc/ORlvyv35v1WuoGjX9J2kpebz6oaJKnVWM1ay9qZc7UOFPTp/CgGz05R