ИВВ

Квантовая матрица перехода и её применение в квантовых вычислениях. Обзор роли и значимости квантовой матрицы


Скачать книгу

и изменения состояний кубитов в результате операций. Она представляет собой квадратную матрицу, размерность которой определяется числом возможных состояний кубита.

      Общая нотация для матрицы перехода – это символ U и нижний индекс, указывающий размерность матрицы. Например, U2 обозначает матрицу перехода размерности 2x2, которая применяется к одному кубиту.

      Матрица перехода является унитарной матрицей, что означает, что ее эрмитово сопряженное равно обратной матрице. То есть, для матрицы перехода U, ее эрмитово сопряженная U† (читается «U даггер») равна обратной матрице U^ (-1). Унитарные матрицы обеспечивают сохранение нормы состояния кубита и сохранение скалярного произведения векторов состояний.

      Нотация для отдельных элементов матрицы перехода обычно записывается как U_ij, где i и j указывают индексы строк и столбцов матрицы. Элементы матрицы перехода могут быть комплексными числами, так как они описывают вращение фаз и изменение амплитуд состояний кубита.

      В общем виде, матрица перехода для кубита размерности NxN имеет вид:

      | U_11 U_12 U_13 … U_1N |

      | U_21 U_22 U_23 … U_2N |

      U = | U_31 U_32 U_33 … U_3N |

      | … … … … … |

      | U_N1 U_N2 U_N3 … U_NN |

      Каждый элемент U_ij соответствует вероятности перехода из состояния i в состояние j или изменения амплитуды состояния. Сумма квадратов модулей элементов матрицы перехода должна быть равна 1, что обеспечивает сохранение нормы состояния и вероятности при измерении.

      Матрица перехода является важным инструментом в квантовых вычислениях и используется для описания и выполнения операций над кубитами.

      Структура и свойства матрицы перехода

      Матрица перехода является квадратной матрицей, размерность которой определяется числом возможных состояний кубита. Общая структура матрицы перехода имеет вид N x N, где N – это размерность матрицы, соответствующая числу состояний кубита.

      Свойства матрицы перехода включают:

      1. Унитарность: Матрица перехода является унитарной, что означает, что ее эрмитово сопряженное равно обратной матрице. Унитарные матрицы сохраняют норму состояния кубита и сохраняют скалярное произведение векторов состояний. Матрица U является унитарной, если выполняется равенство U†U = UU† = I, где U† – эрмитово сопряженное (транспонированное и комплексно сопряженное), I – единичная матрица.

      2. Нормализация: Сумма квадратов модулей элементов матрицы перехода должна равняться 1, что обеспечивает сохранение вероятности перехода и нормы состояния. То есть сумма |U_ij|^2 для всех элементов матрицы должна быть равна 1.

      3. Диагональность: Матрица перехода может иметь диагональную структуру, в которой недиагональные элементы равны нулю. В этом случае, каждый элемент U_ij представляет вероятность перехода из состояния i в состояние j без смешивания с другими состояниями.

      4. Фазовые сдвиги: Элементы матрицы перехода могут содержать комплексные фазовые множители, которые описывают изменение фазы