подробнее, такую, на которой отмечен каждый валун у подножия каждого утеса. Просто картографы обычно пренебрегают валунами, если они меньше Гибралтара размером. Так что, наверное, для точного измерения длины побережья Британии пришлось бы пройти вдоль него пешком, запасшись очень длинной ниткой, чтобы выложить ее по всем извивам. И все равно то там, то сям пропустишь какой-нибудь камешек, не говоря уже о микроскопических ручейках, которые сочатся между песчинками.
Когда же это кончится?! С каждым разом побережье становится все длиннее и длиннее. А вдруг оно вообще окажется бесконечным, если учесть границы молекул, атомов, субатомных частиц? Не совсем так. Мандельброт сказал бы, что длина побережья окажется «неопределимой». Возможно, чтобы переосмыслить задачу, нам придется обратиться за помощью к концепции многомерного пространства. Не исключено, что одномерная линия просто не годится для извилистых побережий.
Чтобы довести до конца мысленный эксперимент Мандельброта, потребовалась новая, только что созданная отрасль математики, основанная на дробных – или фрактальных, от латинского слова «fractus», «сломанный» – измерениях, а не на привычных нам измерениях классической евклидовой геометрии, которых может быть одно, два или три. Мандельброт утверждал, что привычные представления о пространственных измерениях чрезмерно упрощены и поэтому не отражают сложное устройство линии побережья. Оказывается, что фракталы идеально подходят для описания «самоподобных» узоров, которые на разных масштабах выглядят примерно одинаково. Хорошие примеры фракталов в мире природы – это папоротники, снежинки и цветная капуста, однако идеальные фракталы получаются лишь из некоторых генерируемых на компьютере «бесконечно повторяющихся» структур, в которых форма макрообъекта состоит из меньших по размеру версий той же формы или узора, а те, в свою очередь, состоят из миниатюрных версий того же самого – и так далее неопределенно долго.
Однако, если углубиться в чистый фрактал, новой информации не встретишь, сколько бы ни множились его составляющие, поскольку сам «образец» выглядит всегда одинаково. Напротив, если углубляться в устройство человеческого организма, в конце концов наткнешься на клетку, а это структура исключительно сложная, наделенная совсем не теми свойствами и действующая совсем не по тем законам, которым подчиняется организм на более крупных масштабах. Стоит перейти границу клетки – и перед тобой откроется новая Вселенная информации.
А сама Земля? Одна из первых дошедших до нас моделей мироздания сохранилась на вавилонской глиняной табличке возрастом в 2600 лет и представляет собой диск, окруженный океанами. На самом деле, если стоишь посреди просторной равнины (например, в долине рек Тигр и Евфрат) и смотришь во все стороны, Земля и правда похожа на плоский диск.
Древние греки (в том числе Пифагор и Геродот) заметили, что концепция