Петр Панда

ChatGPT. Мастер подсказок, или Как создавать сильные промты для нейросети


Скачать книгу

разделы с блоками, преднастроенные определенными промтами для конкретных задач. Например, А-блоком является крупный раздел с блоками для написания большой экспертной статьи.

      Мы разбили задачу на шаги, в ходе которых вы можете собрать все элементы (заголовки, темы, идеи вообще и разделов, списки, кластеры и т. п.) так, как вам удобно, а затем на основе всего этого сделать добротную статью.

      Если делать так самому просто в режиме чат-подсказки (пусть и многоуровневой, мощной), то все куда более сложно и непредсказуемо: слишком много вводных, слишком многое нужно учитывать, слишком велика вероятность запутать ИИ и нарваться на галлюцинации (это явление рассмотрим позже).

      Чаты представляют собой как «чистый» ChatGPT без преднастроек, так и специализированные чаты для разных задач. Один, например, «заточен» на обучение языкам, другой поможет лучше находить логические ошибки или готовиться по конкретной теме.

      А вот теперь о том, при чем здесь книга.

      Процессы такого уровня – колоссальный труд. Нам пришлось не просто изучить подсказки изнутри и потратить много-много миллионов токенов («валюта» и мера объема GPT) в процессе работы. Нам волей-неволей пришлось:

      • открыть массу фишек и закономерностей;

      • сделать тысячи ошибок и понять их причину;

      • найти интересные стратегии промтинга;

      • обкатать сотни вариантов структуры и запросов;

      • разочароваться в поверхностных промтах;

      • прокачать креативность и увидеть новые пути;

      • и т. д. и т. п.

      В итоге мы стали сильными практиками промт-инжиниринга и накопили такой объем полезного практического багажа, который так и просился для отдельной книги. Именно поэтому она родилась.

      P. S. Кстати, сейчас, поняв и освоив стандартный промтинг, мы уже вплотную подошли к более серьезному этапу, а именно – к созданию собственных LLM для точечных задач. Например, к написанию ИИ текста с определенной стилистикой.

      Конечно, речь идет о надстройках на предобученные модели, а не о подготовке LLM c нуля, но в нашем случае такого и не требуется. Тонкое обучение – тоже не фунт изюма, но, надеемся, справимся и здесь.

      Глава 1. Суть промтинга

      В этой книге вы будете учиться правилам и приемам промт-инжиниринга. Им будут пропитаны все страницы, после чтения вы сможете совсем иначе взглянуть на потенциал ИИ. А теперь о само́м «главном герое».

      Промт-инжиниринг (далее – промтинг) – это направление, изучающее навыки подготовки, создания и оптимизации подсказок (промтов) для нейросетей, где подсказка – это вводные данные, которые пользователь дает модели для получения нужного ответа.

      Качество ответа может кардинально разниться в зависимости от того, насколько пользователь разбирается в правилах и тонкостях промтинга.

      Посмотрим на две подсказки.

      • Дай мне рецепты трех вкусных блюд на ужин.

      С точки