ИВВ

Максимизируйте эффективность машинного обучения. Полное руководство по информационной системе


Скачать книгу

квадратов разницы между наблюдаемыми и предсказанными значениями.

      2. Логистическая регрессия: это алгоритм машинного обучения, используемый для бинарной классификации. Логистическая регрессия моделирует вероятность отнесения объекта к одному из двух классов на основе линейной комбинации предикторов. Она предсказывает значения между 0 и 1 и может использоваться для прогнозирования вероятности принадлежности к классу.

      3. Деревья решений: это алгоритмы машинного обучения, которые используются как для классификации, так и для регрессии. Деревья решений разделяют набор данных на более мелкие подмножества на основе определенных признаков и их значений, позволяя создавать логические правила для принятия решений.

      4. Случайные леса: это метод ансамблирования, который комбинирует несколько деревьев решений для улучшения точности и стабильности предсказаний. Каждое дерево строится на случайной подвыборке данных и случайном подмножестве признаков. Предсказания получаются путем агрегирования предсказаний всех деревьев.

      5. Нейронные сети: это мощный класс алгоритмов, моделирующих работу нейронной системы мозга. Нейронные сети используются для обработки сложных данных, включая изображения, звук, текст и временные ряды. Они состоят из нейронов, соединенных в слои, и обучаются с помощью алгоритма обратного распространения ошибки.

      6. Метод опорных векторов (SVM): это метод для задач классификации и регрессии, который строит границы разделения классов на основе опорных векторов. SVM пытается найти гиперплоскость, которая наилучшим образом разделяет классы и имеет максимальный зазор между ними.

      7. K-ближайших соседей (k-NN): это простой алгоритм, используемый для классификации и регрессии. Он основан на принципе, что близкие объекты в пространстве признаков часто имеют схожие значения целевой переменной. K-NN выбирает K ближайших соседей для данного объекта и прогнозирует значение на основе их характеристик.

      8. Градиентный бустинг: это метод ансамблирования, который комбинирует несколько слабых моделей (например, деревьев решений) для создания более мощной модели. Градиентный бустинг постепенно добавляет деревья в ансамбль, строящиеся на основе ошибок предыдущих моделей.

      Каждый из этих алгоритмов имеет свои особенности, преимущества и ограничения. Выбор конкретного алгоритма зависит от типа данных, задачи предсказания, доступных ресурсов и других факторов. В системе может быть реализовано несколько алгоритмов машинного обучения для различных задач анализа данных и предсказаний.

      Подробное описание работы глубокого обучения и нейронных сетей

      Глубокое обучение – это подраздел машинного обучения, который использует нейронные сети с большим количеством слоев для решения сложных задач анализа данных. Нейронные сети – это модели, построенные на аналогии с нейронной системой мозга, состоящие из множества взаимосвязанных нейронов.

      Нейронные