Дмитрий Павлов

Цифровое моделирование на C#


Скачать книгу

острым). Это условие может быть сформулировано по другому – треугольник виден наблюдателю в случае, если скалярное произведение вектора нормали и вектора, направленного на наблюдателя, больше нуля. Если для определенности предположить, что вектор на наблюдателя имеет следующие координаты (0, 0, -1), то условие видимости треугольника принимает очень простой вид: треугольник виден наблюдателю тогда и только тогда, когда Z-координата его вектора нормали меньше нуля.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQIALwAvAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wAARCAFTAk8DAREAAhEBAxEB/8QAHgABAAIDAQEBAQEAAAAAAAAAAAUGBAcJAwgCAQr/xABdEAAABQICBQQKCwsKBQQCAwAAAQIDBAUGBxESExVV0hQhk5QIIjFTVFaS0dPUCRY2N0FRV3R1lbMZIzI0OElhd7K18Bg1QnF2gZamtLYlJlKRoSQzQ7EXYkVkhf/EABoBAQADAQEBAAAAAAAAAAAAAAACAwQBBQb/xABDEQACAgEDAQYDBAcFBwQDAAAAAQIRAwQSITEFEyJBUWEycYEjQlKRBhQzYqGx8BVygsHRJDRDkrLh8RaiwtI1U4P/2gAMAwEAAhEDEQA/AOqYA4gdmZgpdXZE+yiXhg5ZVQpUKtXBs/kz9Udcbio1Fux5C9NTbbiyzQyoiyQfbGWeRZmQEt9xU7Kfx+wq+taj6iAH3FTsp/H7Cr61qPqIAfcVOyn8fsKvrWo+ogB9xU7Kfx+wq+taj6iAH3FTsp/H7Cr61qPqIAfcVOyn8fsKvrWo+ogB9xU7Kfx+wq+taj6iAH3FTsp/H7Cr61qPqIAfcVOyn8fsKvrWo+ogB9xU7Kfx+wq+taj6iAKrfnsRnZbWa1BTSGbUvGdPdWhEKgz5BKbQlOkpx16WwxHbSXakRKdJajV2iVZK0YOfj2JPo3flw0vq3fCVurdUm1NRTi5OSXklzbb+SdcJu3UeKvc4p+1kexJdkVf9nU69qFfeGqIVRPV6mTPqLb8d5LpsuMup5EZEtt1K0KyMyzSeRqLIzunFRpxdxklJNXTjJKUWrSfKadNJro0nwUY8m/cmqcXKLT6qUW4yXFrhp8ptPqm1TLJ9xU7Kfx+wq+taj6iIFg+4qdlP4/YVfWtR9RAD7ip2U/j9hV9a1H1EAPuKnZT+P2FX1rUfUQA+4qdlP4/YVfWtR9RAD7ip2U/j9hV9a1H1EAPuKnZT+P2FX1rUfUQA+4qdlP4/YVfWtR9RAD7ip2U/j9hV9a1H1EAPuKnZT+P2FX1rUfUQA+4qdlP4/YVfWtR9RAFLvH2K/HiyL2svD6r4hYaOVu+5kiHS2I9QqCySTEdb7jrpnCLQbIkEnMszNS0kRZaRplhi8+WWKHWMXN+iSaX5vml51L0OzXd4nlk+LSrzdtR4XonJbn0VpdZRT0n2UHYv392Jl/U/DnEar2/UalUaO1W2naJIeeYSw488ylKlPNNKJelHWZkSTLI08/dIonD/AEkgAAAAAAAAAAAAAAAAAAAxaV/NcP5u3+yQAygAAAAAAAAAAAAAAAAAGLM/GIPzg/snABlAAAAAAAAAAAAAAAAAAAAxYf4xO+cF9k2AMoAAAAAAAAAAAAAAAAcq/wA+v/HicAOqgAAAAAAAAAAAAAAP4rSNJkgyJWXMZlmRH/UOStp7ev8AXyOqr5NDYm4g4zYZW9BoVZl7frdzznY7Fw2nhvV5MS3oaGyNb8iJHenOPPZnk0RqbQpSu2yShRnVP7aS07biqblJenCUY8NKcrdN2opOTTajCc5JwjLPjSaTSUW+ebdy5TcYpc7Um3Ubip74XnCimWpRsKaBSrJZr6KRFU220uv06XBqL7nKfvr0hqW008TjjhrcUpSE6Rr0iLRMht1FqSVJJRikk7SiopRiuX0jSpu1VS5sz4+spSdycm5OquUnuk6SS5b8lS6KkqNgigsAAAAAAAAAAAAAAAAA+U8QLOx9LHeyrtXhxatWhLv0nU1aLcU1T8WjtU2oNMNyGCppojoQUh5zPXOEqQ/oZpS4SkWdmSljlszOrjlcn5XKUKq/vKEYRUeFLbKXhbd36uW7TZY4narHtT4pqUHKkru5J7pddijaexI+AvZq/wAqe1v1fwf3jURWUHakAAAAAAAAAAAAAAAAAAAGLSv5rh/N2/2SAGUAAAAAAAAAAAAAAAAAAxZn4xB+cH9k4AMoAAAAAAAAAAAAAAAAAAAGLD/GJ3zgvsmwBlAAAAAAAAAAAAAAAADlQ6bpezqGbKErX8BKUaSP/k/4yI//AKAHU3WVTwOL1lXAAGsqngcXrKuAANZVPA4vWVcAAayqeBxesq4AA1lU8Di9ZVwABrKp4HF6yrgADWVTwOL1lXAAGsqngcXrKuAANZVPA4vWVcAAayqeBxesq4AA1lU8Di9ZVwADGnuVE2E6cWMRa9nuSFHz6xOX9D4wBk6yqeBxesq4AA1lU8Di9ZVwABrKp4HF6yrgADWVTwOL1lXAAGsqngcXrKuAANZVPA4vWVcAAayqeBxesq4AA1lU8Di9ZVwABrKp4HF6yrgADWVTwOL1lXAAGsqngcXrKuAANZVPA4vWVcAA4uezSqfV2UlrHIbbQ