или выравниванием, а беспорядок определяется геометрией – тем, какими способами компоненты могут располагаться в пространстве. Повышение температуры многократно усиливает позиции беспорядка. При низкой температуре побеждает стремление к порядку, при высокой беспорядок берет верх. Так, в холоде молекулы воды выстраиваются в кристаллическую решетку льда, а когда теплеет, их положение в пространстве характеризуется типичной для жидкости хаотичностью. Утверждение, что плавление представляет собой резкий переход от одного состояния к другому, означает существование специфической температуры, разделяющей их, то есть четкой границы между фазами порядка и беспорядка.
Энергия упорядочения и разновидности беспорядка зависят от того, какие измерения может осваивать вещество. Последствия фазовых переходов драматичны, и в общем случае теория не предсказывает резкого перехода одномерных материалов из одной фазы в другую. Так, цепочка из молекул воды не должна расплавиться вдруг в какой-то точке температурной кривой: беспорядок возникнет уже при самой низкой из возможных температур и будет неуклонно усиливаться с ее повышением.
С приличной долей приближения можно сказать, что протяженная двухцепочечная ДНК одномерна – как идущие одна за другой ступеньки на приставной лестнице. Следовательно, ее резкое плавление, наблюдаемое в лаборатории, вроде бы противоречит ожиданиям. Однако, когда нити расцепляются, высвобожденная одноцепочечная ДНК изгибается и скручивается в трех измерениях (см. рисунок) под действием случайных сил, влияющих на все молекулы, которые мы обсудим в этой книге. Хотя движения нитей случайны, их последствия стабильны и предсказуемы (с подобным мы не раз еще столкнемся): благодаря конечной конфигурационной свободе полное их разделение происходит при фиксированной температуре перехода, как это свойственно трехмерным материалам. Располагая экспериментальными данными и теоретическим обоснованием, мы можем даже спрогнозировать температуру, при которой разделится та или иная молекула ДНК. Обычно температура перехода составляет около 95 °C, что чуть ниже температуры кипения воды, но точное значение сильно зависит от нуклеотидной последовательности.
Итак, мы можем разделить нити ДНК в пробирке, просто нагрев ее. Если мы хотим реплицировать эту ДНК, далее необходимо построить комплементарные последовательности к каждой из нитей. Для этого мы можем позаимствовать у природы инструмент, рутинно применяемый нашими клетками, – фермент ДНК-полимеразу. Однако при температуре плавления ДНК обычные белки превратятся в бесполезную резиноподобную массу наподобие вареного яичного белка (который в сухом остатке и состоит главным образом из белка). Биологам пришлось найти хитрый способ этого избежать: мы применяем ДНК-полимеразы из бактерий, живущих в горячих источниках, поскольку белки этих организмов в ходе эволюции приспособились исправно работать при высокой температуре. При этом важно, что для начала