Шедворт Ходжсон

Метафизика опыта. Книга II. Позитивная наука


Скачать книгу

Cantab. 1707- p. 2.– «Per Numerum non tam multi tudinem uni tat um quam abstractam quantitatis cujusvis ad aliam ejusdem generis quantitatem quae pro unitate habetur rationem intelligimus. Estque triplex; integer, fractus et surdus: Integer quem unitas metitur, fractus quem unitatis pars submultiplex metitur, ct surdus cui unitas est incommensurabilis.» Мне говорили, что наиболее продвинутые математики современности перестали рассматривать число как количество и больше не принимают концепцию Ньютона, изложенную в этом отрывке. Конечно, математики могут определять число любым способом, который они считают наиболее подходящим для требований своей науки. И все же я должен сказать, что, рассматривая число с точки зрения его происхождения в реальном опыте и места, которое оно занимает в этом опыте в целом, я не вижу, как оно может быть отнесено в конечном итоге к какой-либо другой концепции, кроме концепции количества, которая охватывает все возможные виды сравнительной величины, если только мы не считаем его чистым творением некой чисто абстрактной мыслящей силы, ипостазированной как агент по предположению, и в этом случае его, несомненно, можно считать качеством, а именно качеством мысли этой предполагаемой мыслящей силы. Но это означало бы подмену предположения опытом. Во всех утверждениях Ньютона об элементарных истинах, насколько я могу претендовать на знакомство с ними, я, как мне кажется, распознаю разум, который не только принимает опыт в качестве своего руководства, но и держит в поле зрения отношения, которые та часть опыта, которую он в любой момент рассматривает, несет к другим частям и к целому. Это обстоятельство делает его труды бесценными для метафизика.

      9

      Arithmetic for the Use of Schools, By A, Sonnenschein and H. A. Nesbitt. London, 1870. Part III., p. 216.

      10

      Todhunter’s Algebra. Fifth Edition, 1870, p. 157.

      11

      Цитируемая работа, стр. 1 – «Computatio vel fit per numeros ut in vulgari Arithmetica vel per species ut Analystis mos est. Utraque tisdem innititur fundamentis, et ad eandem metam collimat: Arithmetica quidem definite et particulariter, Algebraica autem indefinite et universaliter; ita et enuntiata fere omnia quae in hac computatione habentur,. et praesertim conclusiones, Theoremata dici possint. Verum Algebra maxime praecellit quod cum in Arithmetica Quaes tiones tantum resolvantur progrediendo a datis ad quaesitas quantitates, haec a quaesitis tanquam datis ad datas tanquam quaesitas quantitates plerumque regreditur; ut ad conclusionem aliquam, seu PEquationem, quocunque demum modo perveniatur,, ex qua quantitatem quaesitam elicere liceat. Eoque pacto conficiuntur difficillima Problemata quorum resolutiones ex Arithmetica sola frustra peterentur. Arithmetica tamen Algebrae in omnibus ej us opcrationibus ita subservit, ut non nisi unicam perfectam com- putandi Scientiam constituere videantur; et utramque propterea conjunctim explicabo. "– Здесь мы снова находим не менее авторитетного человека, чем Огюст Комт, обвиняющего Ньютона в определении алгебры как универсальной арифметики, на том основании, что это дает очень ложное представление о реальном соотношении между двумя науками, которое сам Ньютон был бы одним из первых, кто отверг бы его в настоящее время. {Курс философского позитивизма. Quatrieme Lecon. Vol. I., p. 135. Издание Литтре, 1864). Различие между ними, проведенное самим Комтом, кратко резюмируется словами: «Алгебра – это вычисление функций, а варифметика – вычисление величин» (ibid. p. 134). Но, ни на минуту не отрицая универсальности чистой арифметики, которая является одновременно основой и конечной целью всех вычислений, я все же не могу не думать, что различие метода (a queesitis tanquam datis ad datas tanquam queesitas quantitates), отмеченное Ньютоном как характерное для алгебры, дает более ясное представление о положении, которое эти две области соответственно занимают по отношению к процессам обычного логического мышления. Различие Ньютона особенно ценно тем, что оно демонстрирует методы арифметики и алгебры _ в этой связи, то есть в свете их общего отношения к мышлению в целом. То, что это различие реально,