Елена Чурина

КиноВсеобуч


Скачать книгу

в дне сегодняшнем.

      В случае, когда идеал есть, проблема выбора решается легко и просто в соответствии с продвижением к идеалу, который может быть легко рассчитан, как простое арифметическое выражение или логическое действие или моральный, культурный, этногенезный аспект с заранее ясным виртуальным (мыслительным) результатом.

      Например, если у кого-то «идеал фигуры» девушки равный 90—60—90, то простая арифметическая операция вычитания показывает параметры по соответствию с идеалом и задает параметры для изменения при продвижении к идеалу:

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/7Sc4UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAA8cAVoAAxslRxwCAAACAAAAOEJJTQQlAAAAAAAQzc/6fajHvgkFcHaurwXDTjhCSU0EOgAAAAABGwAAABAAAAABAAAAAAALcHJpbnRPdXRwdXQAAAAFAAAAAFBzdFNib29sAQAAAABJbnRlZW51bQAAAABJbnRlAAAAAEltZyAAAAAPcHJpbnRTaXh0ZWVuQml0Ym9vbAAAAAALcHJpbnRlck5hbWVURVhUAAAAEwBFAFAAUwBPAE4AIABQAFgAOAAzADAAIABTAGUAcgBpAGUAcwAAAAAAD3ByaW50UHJvb2ZTZXR1cE9iamMAAAAVBB8EMARABDAEPAQ1BEIEQARLACAERgQyBDUEQgQ+BD8EQAQ+BDEESwAAAAAACnByb29mU2V0dXAAAAABAAAAAEJsdG5lbnVtAAAADGJ1aWx0aW5Qcm9vZgAAAAlwcm9vZkNNWUsAOEJJTQQ7AAAAAAItAAAAEAAAAAEAAAAAABJwcmludE91dHB1dE9wdGlvbnMAAAAXAAAAAENwdG5ib29sAAAAAABDbGJyYm9vbAAAAAAAUmdzTWJvb2wAAAAAAENybkNib29sAAAAAABDbnRDYm9vbAAAAAAATGJsc2Jvb2wAAAAAAE5ndHZib29sAAAAAABFbWxEYm9vbAAAAAAASW50cmJvb2wAAAAAAEJja2dPYmpjAAAAAQAAAAAAAFJHQkMAAAADAAAAAFJkICBkb3ViQG/gAAAAAAAAAAAAR3JuIGRvdWJAb+AAAAAAAAAAAABCbCAgZG91YkBv4AAAAAAAAAAAAEJyZFRVbnRGI1JsdAAAAAAAAAAAAAAAAEJsZCBVbnRGI1JsdAAAAAAAAAAAAAAAAFJzbHRVbnRGI1B4bEBSAAAAAAAAAAAACnZlY3RvckRhdGFib29sAQAAAABQZ1BzZW51bQAAAABQZ1BzAAAAAFBnUEMAAAAATGVmdFVudEYjUmx0AAAAAAAAAAAAAAAAVG9wIFVudEYjUmx0AAAAAAAAAAAAAAAAU2NsIFVudEYjUHJjQFkAAAAAAAAAAAAQY3JvcFdoZW5QcmludGluZ2Jvb2wAAAAADmNyb3BSZWN0Qm90dG9tbG9uZwAAAAAAAAAMY3JvcFJlY3RMZWZ0bG9uZwAAAAAAAAANY3JvcFJlY3RSaWdodGxvbmcAAAAAAAAAC2Nyb3BSZWN0VG9wbG9uZwAAAAAAOEJJTQPtAAAAAAAQAEgAAAABAAIASAAAAAEAAjhCSU0EJgAAAAAADgAAAAAAAAAAAAA/gAAAOEJJTQQNAAAAAAAEAAAAHjhCSU0EGQAAAAAABAAAAB44QklNA/MAAAAAAAkAAAAAAAAAAAEAOEJJTScQAAAAAAAKAAEAAAAAAAAAAjhCSU0D9QAAAAAASAAvZmYAAQBsZmYABgAAAAAAAQAvZmYAAQChmZoABgAAAAAAAQAyAAAAAQBaAAAABgAAAAAAAQA1AAAAAQAtAAAABgAAAAAAAThCSU0D+AAAAAAAcAAA/////////////////////////////wPoAAAAAP////////////////////////////8D6AAAAAD/////////////////////////////A+gAAAAA/////////////////////////////wPoAAA4QklNBAgAAAAAABAAAAABAAACQAAAAkAAAAAAOEJJTQQeAAAAAAAEAAAAADhCSU0EGgAAAAADRQAAAAYAAAAAAAAAAAAAAOMAAACkAAAACABpAG0AYQBnAGUAMAAwADEAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAKQAAADjAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAEAAAAAAABudWxsAAAAAgAAAAZib3VuZHNPYmpjAAAAAQAAAAAAAFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxvbmcAAADjAAAAAFJnaHRsb25nAAAApAAAAAZzbGljZXNWbExzAAAAAU9iamMAAAABAAAAAAAFc2xpY2UAAAASAAAAB3NsaWNlSURsb25nAAAAAAAAAAdncm91cElEbG9uZwAAAAAAAAAGb3JpZ2luZW51bQAAAAxFU2xpY2VPcmlnaW4AAAANYXV0b0dlbmVyYXRlZAAAAABUeXBlZW51bQAAAApFU2xpY2VUeXBlAAAAAEltZyAAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3QxAAAABAAAAABUb3AgbG9uZwAAAAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAAA4wAAAABSZ2h0bG9uZwAAAKQAAAADdXJsVEVYVAAAAAEAAAAAAABudWxsVEVYVAAAAAEAAAAAAABNc2dlVEVYVAAAAAEAAAAAAAZhbHRUYWdURVhUAAAAAQAAAAAADmNlbGxUZXh0SXNIVE1MYm9vbAEAAAAIY2VsbFRleHRURVhUAAAAAQAAAAAACWhvcnpBbGlnbmVudW0AAAAPRVNsaWNlSG9yekFsaWduAAAAB2RlZmF1bHQAAAAJdmVydEFsaWduZW51bQAAAA9FU2xpY2VWZXJ0QWxpZ24AAAAHZGVmYXVsdAAAAAtiZ0NvbG9yVHlwZWVudW0AAAARRVNsaWNlQkdDb2xvclR5cGUAAAAATm9uZQAAAAl0b3BPdXRzZXRsb25nAAAAAAAAAApsZWZ0T3V0c2V0bG9uZwAAAAAAAAAMYm90dG9tT3V0c2V0bG9uZwAAAAAAAAALcmlnaHRPdXRzZXRsb25nAAAAAAA4QklNBCgAAAAAAAwAAAACP/AAAAAAAAA4QklNBBEAAAAAAAEBADhCSU0EFAAAAAAABAAAAAE4QklNBAwAAAAAHf0AAAABAAAAdAAAAKAAAAFcAADZgAAAHeEAGAAB/9j/7QAMQWRvYmVfQ00AAv/uAA5BZG9iZQBkgAAAAAH/2wCEAAwICAgJCAwJCQwRCwoLERUPDAwPFRgTExUTExgRDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwBDQsLDQ4NEA4OEBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAKAAdAMBIgACEQEDEQH/3QAEAAj/xAE/AAABBQEBAQEBAQAAAAAAAAADAAECBAUGBwgJCgsBAAEFAQEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAQQBAwIEAgUHBggFAwwzAQACEQMEIRIxBUFRYRMicYEyBhSRobFCIyQVUsFiMzRygtFDByWSU/Dh8WNzNRaisoMmRJNUZEXCo3Q2F9JV4mXys4TD03Xj80YnlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3EQACAgECBAQDBAUGBwcGBTUBAAIRAyExEgRBUWFxIhMFMoGRFKGxQiPBUtHwMyRi4XKCkkNTFWNzNPElBhaisoMHJjXC0kSTVKMXZEVVNnRl4vKzhMPTdePzRpSkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2JzdHV2d3h5ent8f/2gAMAwEAAhEDEQA/AOTOXaR+lcbAdPcTu/k/pB7vao1vDdjrbX01P3bXAGx7g07X+hVvYx+13t9S22mj+X+YnAZfbXWKxV6j2scawXOAc4Me9rf3mNd6io9UsDs/Irrex9VdrqKX1aMNdR9Cj0v+C9Nm/wD6aKx3cTKGduZSyrCwmjaNzWXZVsja6y7qGSx30/8AuvVTRX/2mp/wqhZ07ozmQxr2ikuFnoXEPd/xtlwvZuZ+Ztr2LMaSBAkD+A9qs9Lxzl5gx6wX32SGRw1v+Fue6fo1s3PSVb0tf1c+r7KqyMay8OY1wffbYXEOAducKH01N5/wbU1/1I6flVb8DIvw7jJa17vWpEalr9/p3Vs/4T1n7FtWVAua1jTEBrRAB2tG1s/2WrD+uPU7KaquiU2tpN7PVz3ayanf0bGc4fRrt9P1b/8ASfq/+CSXOV1P9nXs6d03Dy/WfgMtrtzWVuNT/Vf6+yn9JvfVjv3+/wDwnrKzi/VjCtxK8h+ZlWF0g7Q2kAtMO2h32h/t/f3LJwWsY5zNzH3P+iGmYaP/ACa6npGNdVjWOfr6rx6bA4O0aPc72lzWuc7/AKhJa0T9VOmWs2V25OPY0T6ws9Ume76bNjXf9bdUrOVl9P6Myvp9OHiP6nS0eq9jTsqIENsse79bszb2/pbcX1v1f/DZD/5taeRecPEuzhA+y12XwRIJrb+gG7/jti8+rstbNjnF9jvc97jLnPcd1j3Od+e9xSSS9TT1O95/SXEvJkta3brPYNC28fdfieo7QglroJA0K5DAsDosDnackaHwhkLuunV+n0+tljPSLQf0Q9zmgmWep/wjvz0lBxMjFqe+La22AnXcJP3/AElJ3QarGF2C40XN1Fb3ONTo83F76H/y/wBJX/IWldQN+4DSdSP9qzPrUbW1YTavYxlhufax0WMthzMWWt/SVNewZHo2/Qufvr/waSnN2Zfq/ZvTs+1eps9DXfuj6PO3+Xv/AJvZ70lP9uZ0evLPtOz0ftEe7b/V+h/JSSQ//9DhM0uGRdU101se6sbNA4A7X7o+n7lWZu3jYPd+aOyt9UZ6eZcNu0WO3sHAId7nFn8j1N6qMaXHT8OdUVjartc87PTcbpADG67nE7W7B++535it9J6pkYbrX9NxbL86wFrrNSGV/uNpqa673v8A6RZu/wCDr9Nb3+L7pFD329YsaLHYtgoxGntcQLLcrX27set7a8f/AEdlvr+z9GifWL6mNs603PxH24+FmWE321tfc/GyHCfWs3v9X7LlXe52T6uzFu9Sqz0/0KSadnoGfh9WbXhAPxuoUsb62FfpcdPUdbjO/wC1FX0v+Fo/w1Wz9KuA6r1LI6h1TKzb6DjOvsLXVOJ/RBkY9WOd4Y/9AyttVj9v84usH1T61j5uFdi5Q6nfTcy77Q8iu+uwO3eoX5FnpZeL9H1ce3J9f/BULmOp4TMj6zZeNgvL25GfZRimzuX2Obvdz+jrsL/+MSUWmMttFwABLgIe1pEhriO7vzl1XT/rR0JrPs9ONlY2M0knJsa20SfpX5LaTvbX7f5yplmxXPrR9WrrujY+H001swuj122Vseybsh2zfl3eq33+tZs3+h/N2f8AWqlifV3C67n0TTdTfjsbvrxsqxrXbBpFTwHZODY52z7Nb+jxf9L+hSVs6P1w6nVTjs6PVdutyNj8raDt+zw2/H9O/wDmbvtdmx/6Bz/0VX85/g1zlbqg17X17zIMzER2Wl9YMHLb0XFuyGNcOn2/ZQ1zPTtqZd6lgwspp9/6C+r1cb0/0ddeT+is+zvqVX6t9Gyer5jMJrhTU0erk5DhIppn6Wv0rbHeyhn/AKLrekgt7Dx8ZuO3N67l/s7Bcf0GLQJysiNT6dbAXY9H/C/+el1HQPrB9X+oM/Z/SvUodUCWY9tTmktaN1lrbGuyK/Z/hbMm71N/7680vqdTk2sva8Pa8tsDxssIB03Nf/NudXtdsW7g5ldllF/T8tlXUsYOFAFbQ/aWuD6bcd4+z3Vua5/qMYkkF7xxb6hrMlwI3Hwn83/ya5PrF2S7reY20BrmxjNaODSwNfRu/e37vtH/ABq6rAezJw67mT7m+8vADi8HZc57Gufsf6rXO2b1zv1nqNPWW2uAFOTVUxjzx6lbS01P/de+v31f6T/rSSi58M9CZ03bf7U7dv8AWSVb0rvtP2efZ63qTrMbfFJJD//R5br2T015twcO05oqs3U5YH6OA737Xu2WO9n6Kx9bPStWO1gbrOp18Apna2e5PZTbi5ECWkfyZEx8EVjs9I659YMbDpxenW1/Z8ZzyMY11y82He7173je57nH9G7d7GLt8PqLa663XZNVl2bXZlxU5zQwlxa6mn1g22unbt9tzfUryq8j9H6S8zx3uxMhlzmFwYSCODBG120/QXT431soq+r3UMNwbdkteP2d6zGkN9ZzQ54rd9H0P0l9f+C9b+c/lpILuM+tFGBksbnuY2tjmPFzi1rtph251Hu3f9aZ/wBbXDdBzBh/WDHymY9uSxtlwrx6QbLXNtFrW+gz6b7avU3s3qk5zXZE2lzy4zba87nuJ/fefpK59XOpN6f1anKsgNZPqEkNEEfR9Rwd6W9v6P1f8HvSVb3eF1Fj3vNOHl42XVF+bTlbt3oHQZWNZufQ93qOb6VdWz+avr/m1pN9NjQ8ECt/Dx9CSe2v6Nrnf9bUOlZL+o9LpzHEPZc59lIAc1u1pNbSGuO73ObYz1P8NX70TAwX0ZN1DPfXeQ/HEQQJLbsez839G5zHVv8A8JV/xSSXkf8AGBnWvs6f06sl2O2p2W4MIIe8vfj1/wDsLXXZ/bvWn9WH9G6Z0ujGs6hijO6nsyba/UYXA2NDMbFAI9vo1/T+0f4ey5cv9but4fWeo1vwQXY2Ix1TL4I9Vzn77cgM+lUz27Kt/wCks/nrPT3rP6c7poymNz6TfiOIGS1hLLg0kbr8ez/T1fS2f4a