Сергей Филимонов

Болезни пищевода, желудка и двенадцатиперстной кишки. Клиника, диагностика и лечение


Скачать книгу

органической диспепсии. Если при тщательном обследовании больного указанных заболеваний выявить не удается, правомерно ставить диагноз ФД.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      1

      Термин пародонтит является синонимом термина «periodontitis» в английской транскрипции.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAcFBQYFBAcGBQYIBwcIChELCgkJChUPEAwRGBUaGRgVGBcbHichGx0lHRcYIi4iJSgpKywrGiAvMy8qMicqKyr/2wBDAQcICAoJChQLCxQqHBgcKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKir/wAARCAFVAnoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3XX9V1KxvdLs9JgtZZr+Z49107KqbY2fPygk/dxUe/wAY/wDPDQ/+/wBN/wDE0a6P+Kp8Mf8AX3P/AOk0ldBQBz+/xj/zw0P/AL/Tf/E0b/GP/PDQ/wDv9N/8TXQUySRY0Z3YKqjLFjgAfWgDC3+Mf+eGh/8Af6b/AOJo3+Mf+eGh/wDf6b/4mtm2vLa8TfZ3EVwgOC0ThgPyqegDn9/jH/nhof8A3+m/+Jo3+Mf+eGh/9/pv/ia6CigDn9/jH/nhof8A3+m/+Jo3+Mf+eGh/9/pv/ia6CigDn9/jH/nhof8A3+m/+Jo3+Mf+eGh/9/pv/ia6CigDn9/jH/nhof8A3+m/+Jqjb6t4suNavNOW10YPaRRSs5mlwwk34x8v+xXXVz+m/wDI/a9/16Wf85qADf4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4w/54aH/wB/pv8A4mugooA5/d4w/wCeGh/9/pv/AImjf4w/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4w/54aH/wB/pv8A4mugooA5/d4w/wCeGh/9/pv/AImjf4w/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjf4x/54aH/wB/pv8A4mugooA5/f4x/wCeGh/9/pv/AImjzPGA6waH/wB/pv8A4mugooA57StW1h/Ekulazb2KbbRblXtZHbOXK4O4D0roa59P+Skzf9gmP/0c9dBQBz+u/wDI0+GP+vuf/wBJpa6Cuf13/kafDH/X3P8A+k0tdBQAHpXFeJHXUPiR4c0O+Ctp7W9zdmB+UuJU2BAR/FtDM2OmcHsK7WsnXPDtnrv2SS4aa3urKXzrW6t22yQPjBwSCCCOCCCCOooAqXuhi31ZdR8PpaWepTqsM8jxAh4QwJJUFSWGcA543c54FctB438QxeCrPXLv7FKdSeK2t1htXzHO85jyVDkuoX5gBgkjGea7G10A2+oSX02qX15dPAbdJZzHiJSckqqIq5yAckHOB2GKxrDw5oF94WufCdvqdxexadMA7iVRNbShvMXDKoAIbkZB98igCneeKfENtZ8RLFu1q0sYLi7snTz4Jiis3llgQys7DPQ7RxzTdS8aavoi+KftRtrs6U1pDaiO3Zd0k+0AsAxyAXHAwTg1vXvhQajplvaX2talM9vdRXa3LGEOXjIZMgR7MAgHhRnvUV54J07UG1s31xdzJrYj89C6qIzHjyzGVUEEYBGSeRQMxNV8W+INN8PaxeCPH2Ke1Fvc3OnyRidJXVJB5ZYHKknkeoHJ5qw/i/UptZ8QQWbKlvp2kJeQ/arCWFzI3mcEOVyv7vqBj5uvHOtfeEhqegSaVqGtancLJJG5uHMPmfu2DKOIwv3gCTtyccmn3XhK3u9T1K+a/vVk1KyWxlVTHtWMFvu/JnPztySfvewwAHhXxPDrWm2CXU6/2nNZR3UsJt3gyrAZZFfkqCcZBI6c810Nc/o/hG10m/tLtry8vprOz+xWzXLJ+5i+XIARVBJ2rycniugoEFc/pv8AyP2vf9ell/Oaugrn9N/5H7Xv+vSy/nNQB0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBOBQAUVWub62s1U3dzDBvOF82RUyfbNTgk4/wA5oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHPp/yUmb/sEx/+jnroK59P+Skzf9gmP/0c9dBQBz+u/wDI0+GP+vuf/wBJpa6A8Vz+u/8AI0+GP+vuf/0mlroDQBz/AI41m98P+C9T1fTTD59nCZQJ4y6tjqOCMfX9D0rB1nxnqvhO/wBSj1kW99DFo0mpwNbwmLa8bKjRHLNkEuhB4xznPFa3xHtbi++HOt2dlBJcXFxatFFHEhZmY8dBUq+F7DUYrqfU5LvUX1Cy+xyPeKI2WA5JQKqptyTknGcgegoAwrnxlrmkaVqV1eWRuVhtrc280lnJbIbmSXyjHhskoCyNkc4J6mslNV1fwz4i8U6pNNb3kUV/YR3qCAoXSSKNN0fzHaVLDg5yAe/NdonhK3fQJ9H1TUL/AFW0liEOLt03Io6YKKvIIB3HLcda5bTvDscnifxDP4gudSk06G4trxXu4RHFcmGJRvciNd2xl4GQDtBIIoGafjDxDrmiz38mmz2QgtYbN1Sa1Z23TzmI8iReAFJxj8ap61461HRfEGs6eVinMIsobLbZyFfNuH2bpXB2gA87flLdAa1z4Z0zxL4fuHj1i9uYNVkjuReLIhYoj740XKYCA8gYz1yTmrFz4KsL281S4vbm7mOqRwpKjMgCNCcxuhCghlPOckZ7UAZur+JdV0WbXNPkltri5s9FbVbWcwFQdpYMjru55UYII4bnpkx2fjW6m0HUNeeW3e00nTy91a/Z2jmkuPLEh+82Y0wQBuXnJOcYJ2Ljwfa3cOpi8v724uNStPsUty5jEiw/N8iAIFGd7ZOM8+wwkfgrTkmmZ5bmWO605dOu4XZNl1GoIVnAUfOAzDIxwfagQ6yvtatNOOo6r5d/C9tHKILC3bzVkP3lUFjuXBGO/BPpjV0vUf7TsVuTaXVpuJHlXcXlyDHqOar6Hoh0S1jthqd9fRRII4hdsh8tQMADaq56Dlsn35NaoGOlABXP6b/yP2vf9ell/Oaugrn9N/5H7Xv+vSy/nNQB0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUHpQBwfg+3g13XPFuoaxBFdXMWqy6fGJkDCK3jRNqgHoDuLH1z7VjaTrepaHpeo2GkTRC2tfFiaVb+fGZFigleMFFwwPyGQ4zxgAdq7efwvE2rXWpabqF5pdzeKouTa+WVmKjCsVkRgGA4yMZwM5wKrzeCNNfRLTS7We6tIrW8S+8yJ1aSWdX8ze7Orbjv5P5dOKAMLWfFviHSrLxi6TWEsmgwwyQ5tWG/dHvYEeZ+AqfVvGOq+FdQ1GLWhb30MWjS6nC1vCYtrxsqtEcs2QS6kHjHOe1N8b+GGXwr4tuNPa9vL7W7YRm2ChxuVdqhQqgjjuSa2o/C9hqMN1PqUl3qL39kbKR7xRG6wHOUCqibck5JxnIHPAoGU9I17WZmvRqIMdtFYLci+ksHhSOX5t6bWPzKAAw5zgkE1kDxxrmkWms3Gura3DabottfeTBbtEWml3/ISXb5QUx68k9q27nwhdvoKaRDr+oS27skUr3JiZhbjrGuI8NngEsCcZ5psngZLjVr+bUdRudRs9V082V9DciNS21sxFTGi7cBpc/7w9KAH6TrGtTTajDeKwhhtI5ob6WweBfNO/emxjkqNqkHj72CawV8ea1pdhrF3rItLj+z9Etb9YoIGi3TTFxsJLt8oKAdM8kmun/4RV30g6bc6/rFxEQELvJErmMAjyyVjGQR1P3v9qkuvBenXt5qs13JcTRarZpZT2xKiNY03bduAGBG9jnJ+97DAI5/VfFniPSvDfiC98pW/s+yjube6udPkhR5Mt5kexmBIG1SDno2Dkir0XinUrvxZc6ZayBIINI+1ZudOmhczbivAcrleM4GeuM8VoXPg1L/wzdaHqOt6pd291EIWlleLzFjHVQRGBz0LEFvep5vC8U2tyaq+o3ouZLD7A2BFtKZzuxs+9kk+nt2oA5fSPHWr6pceDIo/srDV03ajKsB2xv8AZ2nEafP97C85zjIPfFW/D/jHVtdv7C5gtJH0+8uriJ0Fm6iCFN4STzT8rEsiggf3wO2To2PgSw0638PwWl5eRx6AWa2A8r59ylDv+TnKsw4x1z15q5o/haHRLqQ2GoXy2bzSTrYF08mN3JZtvy78ZYnbuIz2oGb1FFFAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDn0/5KTN/wBgmP8A9HPXQVz6f8lJm/7BMf8A6OeugoA5/Xf+Rp8Mf9fc/wD6TS10B6Vz+u/8jT4Y/wCvuf8A9Jpa6CgDG16e/txBJZ3H2e2Usbhks3uZTyAgSNOcZJJODgD8RzNt4r1jUvCf9qKwsjaSXVvd+Tp8s7vNE+1NsX3kU4YkNyvAJHJHXajpb381tLDqV7YvblsfZWULICMYZXVlb244rPj8Jw2ttaRaXqeo6eLdZQxgkQ+e0jbneQOrKzlstuwCCTjg4oAydI8T6rrt1pWnxSWVtczaPHqd3PCPPjJdtqpH82MZDEnJ6ADrmq1l401HXY9J0+3it7a9u1vftsrIXWIWz+UwRcjJZiCMngZzmty38GafYJYf2TNdWEtjamzjlgZWZ4shtrb1YH5huzjOc+pqKfwhplhpNl9iN5bS6SsjW89r+8mPmZMgIKtv3k5IIPODwRmgZy/gPxBf6X4X0LTLhrSSO58PG9s5piYliaJVDJK3Py/Op346BuDWjb+LtVe51u2W5tLhrPRk1GG4W0kSPzCZAVAZv3kf7sYYHuefSPwZ4JtbjwLaQ6/HetdyaQNMmiuB5Zto8fPGgCrxkD5uScDk4raTwPbLJeTS6rqc1zeWA0+eeR4ixjBODjZtUjc3QAckkE80AZN94i8T2XgqDXjcaewuY7Bo1No3ytPKqSA/vOQBIpB9j1qa18S69rHinU9N0drNLWG1tZ7SaeBiZVeVkkk4cZXEblRxu4OcYJ1tR8GWep+DIPDNzeXX2KFYl3jy97iJgUDZTbgFV7DOPc5tW/h6G38R3Ospd3HnXFqlq0JEflqiFiuAFzkFm7459hQI5zSvEfiS78P3OrTXWjLDG13DvuEaGOKSK48pGY7zlSockccgDIzxq+E/EF3q2q65ZXTiZNPniSKb7M8DOrxK5yrc8EnB7jH1Kr4Hsf8AhFbnQpb2+ltp7k3QldkEkchl87KkIB/rBu5B646cVd0Xw5Bo2o319HeXV1PqBR7hrh1bc6rtDDCjHygDAwOBgCgDarn9N/5H7Xv+vSy/nNXQVz+m/wDI/a9/16WX85qAOgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAMUEA0UUAJgUYHpS0UAJgUYGc45paKADFGKKKADFIFA6ClooATApcUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHPp/yUmb/sEx/wDo566CufT/AJKTN/2CY/8A0c9dBQByvi2/XT/EHhmZoLi4xdzfJbRGRj/o8g4Aq1/wlsX/AEBdc/8ABc9Gu/8AI0eGP+vub/0mkroKAOf/AOEti/6Auuf+C56P+Eti/wC