О. М. Калиева

Маркетинговые исследования


Скачать книгу

на интервальном или относительном уровне какие-либо из категорий или параметров? Если да, приведите примеры. Насколько отличаются выводы, полученные в результате измерения одной и той же категории на разных уровнях?

Задание № 11

      Заполните пропуски в таблице 22.

      Таблица 22 – Исследовательские проблемы и типичные методы исследования

Задание № 12

      Какой из методов опроса (по почте, по телефону или личный) вы бы использовали в следующих ситуациях? Обоснуйте свой выбор:

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAFUA7wDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbL/qm+6eDw3T8aAHVHeXC2tpLK7xxrGhdndtqoAM5JPQD1ryX9q/9sj4f/sW/Dr/AISX4g+IE0uCeZLXTrFImuNS1u5faEt7O2QeZcTsxVfLiBxuy2BXzTB+zr8Xv+CqMsepfHaz1f4TfAiZvPsfhPZ3nl674qi6o/iO7iP7qJhydPt24LASOxQqQDV8a/t6+PP22vGOoeAP2TbfTLvTbKd7LxB8Y9XtTc+F/D7BiksOmw5A1e9QbiArC1Vgu92yVqloH7dPxO/4J967a+Ff2sIbTVfA9xPHbaT8bvD+nmHRZi7BI01y0Td/ZcrsQvnDfbM0g+ePBI+yvAXgHSfhj4W07w/4c0jTtB0PSYUtrKw061W2tbONcgLHGvyJGcDCqOCcmtTxF4fsfFvh+90vVLK11LT9Qge2urS5hWaG5idSrxujgqyspIKsCCCQeKAG6FrVl4m0q11DT7u3vrG8iSe2uIHWSKaNuVZHXgqwwc9xWhXwXq/7E3xP/wCCcer3HiP9lJrfxJ8Opp5LvWPgrr2otHZZbLNLoN9ISNOkY7v3Em+2djx5de+fsY/t5fD79tbSLyPwvdahpXirwvILbxJ4Q162fT/EPha4PWO8tZD5gY9FlGUf5irNyKAPeKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACikbO07eGxwSM4rjfjJ8bPCf7Pnw31Txh428QaV4W8M6PB9ou9R1S5S3t4U7AsxyWJztUck4A5oA7GZd8TD5uQRxjP68fnXyT+0V/wUdvpvirffB39nnw7a/Fj4ywKF1N3nZfC/gMN8om1q9jyUYffW1iD3EgUqFjyGrgU8U/Gr/grW+3wy3ij4A/s6TF0fxFJG1h43+INv0H2GJxu0mylGSJpF+0SIUKogOa+rv2cv2ZfBH7Jvwy0vwZ8OfDth4X8M6exkW3tE5uJG+/NNI2ZJpnOC0jkuTyzEcUAeQ/sn/8ABOS2+E/xPX4sfFTxFdfGL46X0Rjm8TapEI7Xw5G/Wz0ezyYrG3GSCV/eyDJZ2ztH1NRRQAUUUUANlOIm+h6185fti/8ABOTwr+1nrWn+LrK+1j4bfF7w4h/sH4geGpUtdY00feEE3BW8tWYANbXG+IqW27CSa+j6R22qTycDOB3oA+HPh7/wUa8ZfsjeO7H4d/tcaTpfhia+mFn4d+KelxmHwd4tc8KtyWydKvHXDNBOTGzLKY3K+WtfbFldx3ccc0MglimwUkUhlkBG7dleCCuMGsb4hfDXw/8AF3wNqXh3xNo2k+IfD+sQG0vLDULdbq0vIufleNgVI55BBH1r4uuv2cvjJ/wSzb+1PgHDqnxg+B8L+ddfCTVL7drHhiIsS50G9lY+ZGg3MLG4ZuRiNwWAoA+9qK8d/ZE/bY+H/wC294Ek8QeAdce7GnT/AGPWNJvIGtdY0G6Xhra9tHAktpg2QVZcEDcrEc17FQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNlO2Nid2MHOASf05/Kq+u6xaeHtEvNQ1C4trOxsYHuLme4lWKGCNFLM7uxCqoUEkkgAAk18N61+2n8Tv+Ch2r3nhX9lpk8PfD+GaSz1j426zYmayYrkSR6BZyYGoSg7l+1SbbVWX5fM+TIB61+2B/wUT8O/sx+KLHwJ4d0fUfif8bfEVuZtA8AeHpEbULlMAC4upXIisbFWxuuJmRcZ2K7DFcH8G/8AgnP4k+N/xN0f4qftS65p3xA8YaXP9t8OeCNPD/8ACHeAnH3TDEw/0y+TjN5OMhgPLRMBq9g/Y6/YZ8C/sT+HLu38J2t7fa74inF34j8U65cm/wDEHiq5ySZr27kHmSSAklVGEUFlVF617hQBDBCIQqqoGwBcKu1cdgB7VNRRQAUUUUAFFFFABRRRQAU2QZjbr07HBp1FAHyz+1p/wTV0f46fEKH4oeANe1D4P/HbTYPKsvG+hwo326JcEWuqWbYi1C0OAuyVSy7VKuMVyvwR/wCCk2u/Cr4o6N8Jf2ptA0/4Y/EjU7j7NoXiayLSeCvH7H5ENhePzb3TdDY3G2YFoyhkEirX2e5YIduC2OATxmuK+N/wK8I/tHfDLVfBnjjw5pPivwzrEHkXenanbrNBMo+6SDyrg52uvKnBHIoA7CFlmGflYNhwQdyn0INTV8Bf8IZ8cv8AgktibwfH4n/aI/Zzsy0k/hy8uvtXjrwLbZJxp9y7BdUs0XO23mYXCqI1V2HFfV/7MX7WXgH9sX4aWvjD4c+JLHxJodxKYJXhJWeyuFxvt54HCywSocho5VR1xkrg5oA9OooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbL/AKtuo4PI6igBX+6c8cdfSvFP2u/25Ph/+xN4LsNQ8Y395Lq2tTiy0Dw3o9sb7XfE13wfsthaJh5n5UFgQilhvZRXkPxq/wCCiviH4pfE3VvhL+y9oelfEj4haSxsfEXi27kceCfh9IOWF7cIf9IugCSLO2LyAriQxhDjtP2RP+Cd3h/9nfx9dfEHxZrWpfFT43a7EINY8e6+qNeBMA/ZLCJB5dhZjJAghC5Ay/mfeAB5Pov7HXxM/wCCkOvWvib9pqH/AIRH4YwzpdaR8FdKvvMhuVyDFL4juk2i8lBAcWUbeRHhNxlO5T9ueHPDth4T0Wz0vS7O307T9PhS3tba3jWOK3iQAKiKOFUAYxWlRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAI52oT7d6+Sf2lf8Agmh/wkvxMufjB8DfFEnwQ+N8ig3+q2tqkuj+MFX5lg1qyUiO6U/dE4ImjDblYlQtfW9NkG6Nh7d6APkP9mP/AIKVPqnxd034P/HrwrL8F/jVMT/Z9lczibw/41I+Uy6NfthZ85DG3bbcJu2kPhzX19Xm/wC03+yx8P8A9sH4W33gz4keF9O8V+Hr35jbXgw1tJjCywyqRJDIvVZEIdTggggV8l/8JL8dP+CTQWPXm8UftHfs52nyrrFvbfa/H/gSAcBruNABq9kigEzRhblQ0jsHCigD78orhfgJ8fvBv7T/AML9I8cfD3xFo/izwrrn7221LTp1khYjKsD3WQMNrI2GU5BwRXdUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSPyjdenbrSTHbCx+bofujcfwHevl39rP/AIKO2XwZ+IK/Cv4c+Hbv4v8Ax41KETW3g7SJgI9IiYcXerXXzJYWYyrbpCHcOqojZAoA9k/aK/aR8Cfsn/C7UvGnxE8Uab4P8L6WMz396+1d2MhI0Cs8srdFjRWdjgKCTivkZtC+NX/BWHLawvi79nv9m68+caYshsfHXj+H+5O6Fv7JsXBx5cf+kzIDloxKMd3+zp/wTk1bWvivo/xi/aN8SWnxY+L1gfN0Wyhh8rwp4Ayd2NKs5MkzjhWvJS07bUxsAr68xjAXtQBxnwL+BXg/9mv4aaT4M8BeHtI8LeFtFTybPTdNh8mGEdTxn5pCfmZ2+ZsknJNdrRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2XPlNt+9g44p1FAHxj8b/+CbOseAfiXqXxd/Zh8RWfwp+KGqN9o1zQ7tJZfBfjx88jUbNMMk7HgXtvsmGSW3hq6X9kX/gpZpPxj+JH/CqviV4fvfgz8eNNjMl14O124jePV4x1utJvVxDqNu3PzRDzEKSK6LjcfqefJhfbtLbTjIyPxryH9rb9i74eftr/AA/j8M/EDQ/7WhsZEutM1CGVrfVNDuVI2XdldRkS284bB8xCAQuGyMigD2CivgVP2g/jL/wSq22Pxqk1744fAe2ytr8U9OsDL4i8JQjoNesoRmeFVyPt9uucKWkQF91faXwz+J3h/wCMXgrSfE3hPWtK8S+HdcjW50/VNNuUu7W7jOSXjkjO1l/h3A53cGgDqKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiimyAtGwBZTjgjqPz4oAcx2qe/tWT4z8a6T8O/DOoa5r2pafo2i6TA9zd399OsFvaxIpZ3kkYhURVBJZiAACTwK8b/bF/b78EfsV2Gk2OsjUfEfjrxVuj8M+B/D8Qv/EHiKYcNHbWwIPljjfK5EcYJLEAV4j4U/YT+IX7eXi3TfG/7WMmnL4fsZkvvD/wW0m6+0+HdJdTujuNYnwP7VvB8pCYW2jIbCvvJoAq3f7TnxY/4KeXzaJ+z3caj8Mfgr5hg1L4w6hp23UvEMSk+Ynh2zlXLBhuT+0J1EStvMSyMoB+kv2Qv2Mfh7+xX8PpfD/w/wBGbT11C4F7rGo3crXeq69dnJe5vbxyZLidmJJZmIA+VQowK9T060j020gt7eGO1trdVSGGMBUSMDaqAD5VA7Aegq7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAR3aCS1kVlDKyEFSu4Hj07/AEr4j+Jn/BOTxl+yp411X4j/ALIuq6N4M1DVJjeeIPhhqqn/AIQrxe/VpIUjGdLvGA2iaBdkhWMSIBuavuCmyEiNsBiccAYyfpnj86APm39jb/go54V/aw8WXvgvVNM1j4Y/GPw7EJde8A+JVEep2sYOPtFswPl