А. Ю. Владова

Разработка масштабируемых программ для многоядерных архитектур


Скачать книгу

новой микроархитектуры Intel® Core™:

      Технология Intel® Wide Dynamic Execution позволяет обрабатывать больше команд за такт процессора, повышая эффективность выполнения приложений и сокращая энергопотребление. Каждое ядро процессора, поддерживающего эту технологию, может выполнять до четырех инструкций одновременно, используя эффективный конвейер из 14 стадий.

      Технология Intel® Intelligent Power Capability делает энергопотребление более низким, активируя отдельные логические подсистемы только по мере необходимости.

      Технология Intel® Advanced Smart Cache включает совместно используемую кэш-память 2-го уровня, которая снижает энергопотребление, сводя к минимуму обмен данными с памятью, и повышает производительность, позволяя одному из ядер процессора использовать всю кэш-память при бездействии другого ядра.

      Технология Intel® Smart Memory Access повышает производительность системы, сокращая время отклика памяти и оптимизируя, таким образом, использование пропускной способности подсистемы памяти.

      Технология Intel® Advanced Digital Media Boost позволяет обрабатывать все 128-разрядные команды SSE, SSE2 и SSE3, широко используемые в мультимедийных и графических приложениях, за один такт, что удваивает скорость их выполнения [4].

      2.2 Многоядерная технология AMD

      Имеющаяся процессорная архитектура AMD позволила интегрировать на тот же кристалл второе ядро при переходе на технологический процесс 90 нм. В процессорах архитектуры AMD64 с двумя ядрами дублированию подвергнуто само вычислительное ядро и кэш-память, в то время как контроллер памяти и контроллер HyperTransport остаются в двухядерных процессорах в неизменном виде. В этой связи ключевое значение начинает играть блок System Request Interface (SRI), на который возлагается обязанность арбитража потоков команд и данных между двумя ядрами. Процессорные ядра взаимодействуют с интегрированным контроллером памяти и контроллером шины HyperTransport через Crossbar Switch, который, по сути, является арбитром шин контроллера памяти и HyperTransport в соответствии с рисунком 3.

      Рисунок 3 – Архитектура процессора AMD Athlon 64 X2 Dual-Core

      Особо стоит отметить тот факт, что хотя каждое ядро имеет собственный кэш L2, для него доступны данные и «соседнего» кэша – второго уровня. При этом процессор поддерживает когерентность хранимой в этой «быстрой памяти» информации. Такой подход исключает повторное обращение к оперативной памяти за данными, уже загруженными в кэш одного из ядер, что позволяет уменьшить время ожидания и снизить нагрузку на шину памяти. Кстати говоря, наличие интегрированного на кристалле контроллера памяти также весьма удачно укладывается в концепцию двухъядерности. Ведь в этом случае ядра общаются прямо с контроллером памяти, не имея посредника в лице контроллера системной шины. В своей же практической реализации новые двухъядерные процессоры компании Athlon 64 X2 Dual-Core изготавливаются на основе ядер Toledo и Manchester, для которых одноядерными аналогами являются соответственно ядра San Diego и Venice. Это, в свою очередь, означает, что процессоры выполнены по 90-нанометровому технологическому процессу с применением технологии SOI (Silicon On Insulator) и обладают