Михаил Михайлович Филиппов

Исаак Ньютон. Его жизнь и научная деятельность


Скачать книгу

несколько позднее Лейбниц создали настоящий метод, давший огромный толчок всем отраслям математических наук.

      По замечанию Огюста Конта, дифференциальное исчисление, или анализ бесконечно малых величин, есть мост, перекинутый между конечным и бесконечным, между человеком и природой: глубокое познание законов природы невозможно при помощи одного грубого анализа конечных величин, потому что в природе на каждом шагу – бесконечное, непрерывное, изменяющееся.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/wAALCAJHAVgBAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/APZqKKKKKKKKKKKKSloooooooooooooooooooooooooooooooooooooooooooopKCQBknA9TVCfXNMtyQ97GzDqseXP5Lmo312PJ8ixvrnBxmO3IBP1bFRf2zqbZ2+HroYP8c0S/j9404arqmMnQZSM/w3EZz+tSJq83/LXSL6PjsqN/JqVde0//AJayvbn0niaPH5irsFzBdJvt545V/vIwYfpUtFFFFFFFJ3paKKKKKKKKKKKKKKKKKKKKSlprOqKWYhVAySTgCsx9ft5crpsUmoyZx/o4+QfVz8o/Oo/K168kDSXMGnwg8xwL5rn6s2APwBpYvD1oGL3MtxfOTnN1KXA+i8AflWlDHFbxBIo1jReAqrgCnbh1zQxA56Z96avzAcjA/SnEDcD3pxwRg4Oe1U5tI0+dtzWiK/8Afj+RvzXBpn2G8t1H2PUHIH/LO5HmKfbPDfqaaNRu7YkX+nuEHPnWx81D9R94fkas2epWWoKWs7qKbHUI3K/UdRVmloooooooooooooooopKWiiiiiiimu6xozuwVVGSzHAArFl124vsx6Dai7OcG6lOyBfx6v9B+dFvobzMJdau31CXO4Rn5IUOOgjHX/gWa1giRRiONAiKMBVXgfQU5ifpQpwOSM+1NZhnp+tKTg46H69KCSynB7daSMjoCG9eaeQc9KQk84x7fWlJxzzx6UtA+tUrvSbG8kE8tuBMv3ZozskX/AIEOaqqmsafzDMuqW39yXEcy/Rhw34gfWrlnq1peSGFJDHcAZa3lG2Rf+An+Y4q5S0UUUUUUUUUUUUUUlLRRRRRRWTe69FFdGwsYWv74Y3QxHiL3kboo/X0FQJo81/MLjWLkXQ5KWsYxBH6ZX+M+5/KtZUUAKoCqowABwKUMwOMcDp70FgeDj8aXtgHJ7ZoYjP17fnTN6klQOT6c05FDYI6kc5pRkEDPTpigZP07cU4Hg7vx4qJ2fH8PPQk8GnKG/H+dOZjyNpzQMhfuge1IW3E46j/69Ln8qrXmm2mox7bqIOy/dcHDxn1VhyPwqp5+oaQQLkNfWQH+vRf30fu6j7w9xz7GtO3uYLuBJ7aVJYnGVdDkGpaKKKKKKKKKKKKKKKKKKKZJIkUbSSOqIoyzMcAD61h/a7/xAWTT2ay00j/j9xiWb/rmD90f7R/Ad60dN0y00mzFrYwrFHnJI5Zj3LHqT7mpsg8A5IFKCCeSQV9Rigsw5xkYGKarAFSw+8OKczfMURhn0NIzkjK5JJwRnrTHVmx1yP4sfT2qVFCgbTgj/P8ASgnLYBAPtTiRjkdKdntjimFQewwetPAIA6YpMZPU5FKBjjNNC7QO54powTn5c96eBjGcDHpRnkY6fWs6bSjDO95pjLb3DnMiH/VTf7wHQ/7Q5+tS2OqxXc72kqm3vYxmS3c8geqn+JfcfpV+iiiiiiiiiiiiiiiikqK6uoLK2kubmRY4o13M7dBWOlnL4gf7RqURisVOYLJ+rns8g/kvbvz02RtVflGB7dKiBO0jkHrgn2p6qM8N3+v+elL0yDgDtSMwVhgcn2+lJuJGVH69aRmG8g5A9fTrQXIGQvQ8imCVgApAwT0HapkwABk49z9KOFk4J6Z5NLuyARnFIWUncM0FgOSTkDp/n6VIDxRuweaTcFJqJ5CMYHXgbupPpSo3OFIPr/8AWpxLYOQPzNKCAOBkZ707r6VQ1LTor7yywZZoiWhnQ4eJvUH+nQ96itNUlhvV0zU1CXDDMMwGEuQOuPRh3X8uK1qKKKKKKKKKKKKKKKjnnitoHmmcJHGCzMegFZEMD6xNHf30UkUEbZtbZ+P+2jj+96Dt9emwQG6GmE4faTzjtQEKj7xxQAQxbHWlOMct9KiLZGQc5I6N2z60u/KnIOCOcc4/Kmhe44A5PBI704o2AwwGPXHSmxDA3MOTUwZhjOPelxuPOcj3powwxlqUjgjjn1+lJhcHgk49aBkg9MGkywAUL0xx/kU0s/GAPx605AMZIFKuOCBwf/rU5zggjPNJtAbgDrzTt3PSkJAbkgVBe2NtqVqbe6j3oSCOcFSOhBHQj1qrZ3s1rcpp+ouHeTP2e4AwJh6EdnA7d+o9K1aKKKKKKKKKKKKKRiFBYkAAZJPasVYjrtzHdyZ/s+Bt1vGRjznHSRh/dH8I/H0rXPpyeOopu8jgDODRnLsvOeuaDuwcHnPOKYdxUnflevXr1pWdgM7eMfiKiMZEnG4rkYA6Dn/69P2DhgOcDnp74ppWTJCgAccflSq5DfODu9OnpTdy5IJXpjlutSxyKIweuOAQc1FdXcSoQZNoBwfaqr6taeeIxLjPBYYx+ffpTpNVhjZFeRUaQAoGIB//AF1cil3qdo47c055EjH7x1T3Y9earfbbYnKzRgjnIYcetTeZj7rAjHQdaad5U7XwT0b0p+5yuQ6kA45p+/k7iNoHJNBbOdrfMeMU/qvB5pvBbGecUoOeh9qr3ljb39pJbTxlkfupwykdCD2I7GqWl6hPBeHR9SkDXKAm3nPH2qMd/wDeH8Q/GtmiiiiiiiiiiikrLuGXV7iWyxmzhO24YHHmN/zz+g7/AJetX16FAMY6cY4p3Uk8de1NzjIZsnORx701RsBGc4B7daHlEeDjJJ7UwspJPVsdM8dKczYTczEHGTiohlpMFyTk4z7GpVU4APGOOvFKdin5iBn19hWbe61aW0LNFIksh4A38Z+ufauUn8Q3N7IrLM8a4BKrkHP6/wBegpUvrm4jjMkM2UB2kbkPXv0GcYqUzzPD/pGEIwypAowzdmOf8arwTyyqdsrI5BGGlBJI9qju7HUL20kESO3A3SZyV56BT/jUuj+Jb/TUOn6gM3GdsYbJB9+mQPbtVW91O4vr2RdQtfNTaFVxMFRSffHX2qGx1Ka1Z7cWkSJI3DABiwHofb2rptJ1RZY4mRszRqVbJOfYEen61t2V8mogtE+Np2lcZI5H86uAszsG6jv68elOdQ2VPAIx9aURkDBPXrzTjkDBIqEK3zsTnjAFSBcNnnGOmKUk5BHftVDWdNj1S18lpDBcI3mW8643ROOjD+vqDil0fVGvlmt7lBFfWrbLiL+TL/ssOR+I7Vp0UUUUUUUUUVm6tdzp5VjZMBd3WQrH/lkg+9IfpxgdyRVm1t4rS2jtoRhEGBk5z6k+pPWpGBPsfU9qTblemT+WajZDu3ZKnkcCmyShQVYZ3HA56cUzKqMDbjJJJOBn0pY0YltyquQFB74xUuMR4JztBP146U1cMflUAZz29qr3+p2ulweZckk44Axk+tcRqGu3WsTcOyQqSFjQ/KRjq3OT+lNBjnb54mkd+MEM2cj/AGf/AK+PSiQ3CHy1sQmAq4QKM4yO49M9qmguL0wsqxeQyA5wFO8fXHBqCXz4oyu1zHJ85aQhBnPGcnOa3dNtHbbiaMRhdxdFPyeoJ9fena05iinXymVZFCqVVhjPU5zmuJNzNZXdvqLWpWFJBE7yAAgEdjjn1z+dbd/IJNssYjnUc+bCAhHqSvrg9fan6eHILxulzExLPGyAMP8AdPNR3GmbCLzTpDtOSyOehHZvSpNL1wxzrKyfK7YlQLg5HO4V2kcn2iKOS3cOjqCG6Z4NW4yOP4j6j8KeXPTGDSFtwJA7UnljB688UbsEKevQUbsDOMDHX0qJz8pYjp3JrP1KxneaLVbMbb62UgJ089Opjb8eQexrQ03UbfVbGK8tmJjkHRhhlI4KkdiDwRVuiiiiiiiio5po7eF5ZW2oilmPoBVKxhBklv5R/pFxgFWP+qQfdT2xnJ9yauDA7cevpTWG44/A/TmgrvO4YzimSsXwVYKQfm3dCPSo0wpDZ+Ubf4vaiR0XawI3EgDPekAE6jeuCCCPripEBUbmOQCT71navrcWngoiCWcnAjBAwexJ7Vy0kF5q149xdTC3TeVLSOdoH+yucY96nX7FBIkcczTjvtUZwDjqeuf6VH5U3lrJAHWIsAEZmKg5x6fpSzG8tpmaGSKQBdyKYgCG6ZzkHmpHubu/2FrdH+Tkl9vsQRn1qRbOHzPO1KS3UjlYogdxI/2jwK1oNbgCAW6LCMZIbgfT1rMu7hGEzFnaZxx5a4OO2OKznimNrDNND/qzja4Hlg+n1J6n6U19Fe1hSNHeDEeVO85z+ecdsVPpt7NHEyXxSWPO4OBiQN/eHqB+dLb6kbvUAWILksdhX5JQPoOtQ6jbLExv7OMyxTKSVx0I7HH8Q/UZNbnhvU1dlgLHa4ypzwG6EYz3rpSwyeeRx1puWJGO/NOC7gckinE5yMcY9ai/i3A9f8/1p/LLjB68g9qjKYOXOQOxpR833uMHg+tY90V8Pak2pDCWF0yregA4jkPCy+w6BvwNdADkZFLRRRRRRSVnXTfbL9bbP7i3xJOf7zfwp/7N+A9atqSrkY6n19uKUHI6ZJHXpTfmLAH+X+fWlACH7mSMciq9yzJmRPv4+6Oc4pHZJBsfbkjAYDt1FJ5KjCsuee319KZH9/H3WOOF78df1qLUb/7FY7+PNYgIDgFmJ/ya5WVnkdVKea7uS7k4zx/Ec9OOg/lQLaW5l2THKt0wRz7Z7CtzStPV0EklvHFhfnYgMc9OB3P6fWtdbW0+zIjRqUQ87ucH39/aq91BExBjU7iPk8vAz68j+dVU02aRUUS+Sq5DAjczevfjNMk8OBpkIlZkRwdrksG9c8VFJ4ZlYny3tVjIPy7CSOeQD6U+38PSRTO73McQ2jaIjgnGep/+t2qzbaXbRSxPcctGvGHymfXHqfU1aniikfn5iy4+70HX+lcxf6fsuSqxHaerZznn9Kxo4JYpgUYIFcspHHU9PxzW9YrEyu8XzkR4mUtkKw7kDrkH8DQlvJZ3QubJWKn5mG7crDqSR1z15HStLS/EC3Li2uw0EmRtDjhh9cfr71txyDOB/L6f41JvzweOM00nJ46Y5A4J/wA4oVv4Cec4/WlCAEt1Pc0u358nGOwxTQeny8ntUMsMc8TwzlWWRSjo2PmB7frVDQ5JLCaTQrmQu1uN9o7HJlg6DJ7lT8p/A963KKKKKKKr3t2tlaSXDKW2DhR1ZjwAPqSBUNlbG1tQsj7pmbfM/wDeY9T/AEHsKl2ZP3s+q469aXgjo2AD1+lNLbgFGDn16D0pzDPGQM8cHr3prOUyQFH65Gf/AK9MZcsy7PvL26Z5HWmYMbbs5XGMHr2/+vTFjxKWD5P90nPPr+grFvjHfamW3qUiJ8oE4AwOSfSobdVuJQ1mSkEQOXPOeep9z2//AFVPcx21tJneyxw8yA85b06deasQX8Vtbnc5MxOWGMbCRn9BUloGnYXEjOyrxGgPT3PNasVqm0tyd2CAegqWKFV6KRjjrmpcUYFRSKNrEIGx7VDlTyYmBx2qOXLkYkZSOBwP04rKNvHH5rTy/M6nClsZP+NZNxa4baCS0jZAY4HSseW7udElivIBmBjslh7Bf72K63S9QtbmBXspkjmIB8ljxj1GeaqapF57KFQGZclyoHzZ5yvHX+fPerekagoH2aWRZJFO1cdHHbH5DrWukzlm3Lg44GenenMFjU+ZkAHg9cc//XqQMS24Lz0Jz1Gackfl4AOfc96c2WHynjvSgKvUZprZL8Ln1zWfqtpLNDHd2y/6ZaNvgPTd/eQ+xHH5HtV6xvYdRsobyA5imUMuev0PuOlWKKKKKSs+fFzqKowPlWnzk54ZyDgfgOfxFSO8nm4UAAd92c8ijcHwzZyCMZGM9KcnDKCABxk5/CmDAfJBYHbj0HUU6AMqDcxHA4Pt1ocZwNxXBxn1PSmgu23LEY65/wD1cdDTgVwcgjuB7dar3pEVu2wjeBgEep/GuUu7qNd1sGXMhAUsCSRkjHtk1No0jWcUz4ZkQ7EQgfO+Mk+hxjAquT5DMZWYF3AdieA5GRnj8M+tVnlka4ZVkWR5Wbdv+8ME8e54P5V1WmqFt4hKoYY+8H3ZP+FWpplYqgPl84U4JGauWw/dhWcEjrjjmrNJnNV5zg7mLKFbt3qskiBBtuSuTzu79KhmuYliZmeLIOByCKxbi6hWUmPa/OCc5Hv3qtcOkkAlJdmVgchcZHpWZeKZLfawHlSL8wJyTk9Pyrn7eI2d/IsMkkcsOXhx1x/Dgnrg5Fbw1q41C0yGiGoQoRyeLkY5GOMMPanaVfyrdxzCUBs