Коллектив авторов

Руководство по спортивной медицине


Скачать книгу

возросшие требования к синтезу определенных белков и соответствующих им информационных РНК могут быть удовлетворены многочисленными геномами полиплоидной клетки не только за счет увеличения интенсивности считывания с каждого структурного гена, но и за счет увеличения количества этих генов. В результате открываются возможности бüльшей активации транскрипции и, соответственно, бüльшего роста клетки при менее интенсивной эксплуатации каждой генетической матрицы.

      Рассмотренные черты взаимосвязи Г ↔ Ф не являются ее исчерпывающим описанием, но дают возможность поставить основной вопрос, относящийся к самому существу этого регуляторного механизма, а именно: каким образом ИФС регулирует активность генетического аппарата клетки? Этот процесс наиболее эффективно можно рассмотреть на примере деятельности сердца, так как долговременная его адаптация к меняющейся нагрузке является предметом пристального внимания кардиологии.

      Применительно к кардиомиоцитам вопрос может быть конкретизирован так: каким образом увеличение напряжения миофибрилл активирует расположенный в ядре генетический аппарат? При действии на организм различных раздражителей, требующих двигательной реакции, а также при действии гипоксии, холода и эмоциональных напряжений нейрогормональная регуляция и авторегуляция сердца мгновенно обеспечивают увеличение сократительной функции. В результате использование АТФ в кардиомиоцитах возрастает и в течение некоторого короткого времени опережает ресинтез АТФ в митохондриях. Это приводит к тому, что концентрация богатых энергией фосфорных соединений в кардиомиоцитах снижается, а концентрация продуктов их распада возрастает. Поскольку АТФ угнетает окислительное фосфорилирование, а продукты ее распада активируют этот процесс, приведенное отношение можно условно обозначить как регулятор фосфорилирования (РФ) и принять, что РФ регулирует скорость ресинтеза АТФ в митохондриях.

      Представленная схема цитологического звена долговременной адаптации демонстрирует, что нагрузка и увеличение функции кардиомиоцитов означают снижение концентрации КрФ и АТФ, и что возникшее увеличение РФ влечет за собой усиление ресинтеза АТФ в их митохондриях. В результате концентрация АТФ стабилизируется на определенном уровне, энергетический баланс миоцитов восстанавливается. Энергетическое обеспечение срочной адаптации оказывается достигнутым.

      Главный момент схемы, который делает возможным понимание не только срочной, но и долговременной адаптации, состоит в том, что тот же параметр РФ приводит в действие другой, более сложный контур регуляции: опосредованно через промежуточное звено, обозначенное как «фактор-регулятор», он контролирует активность генетического аппарата клетки – определяет скорость синтеза нуклеиновых кислот и белков. Иными словами, при нагрузке увеличение функции снижает концентрацию АТФ, величина РФ возрастает, и этот сдвиг через промежуточные звенья