Азиз Ансари

В активном поиске


Скачать книгу

H. S. Bossard. “Residential Propinquity as a Factor in Marriage Selection”. American Journal of Sociology 38, № 2 (1932). P. 219–224.

      2

      John S. Ellsworth Jr., “The Relationship of Population Density to Residential Propinquity as a Factor in Marriage Selection”. American Sociological Review 13, no. 4 (1948): 444–48.

      3

      William M. Kephart. “Some Correlates of Romantic Love”. Journal of Marriage and the Family 29, № 3 (1967). P. 470–474.

      4

      Stephanie Coontz. Marriage, a History: How Love Conquered Marriage. Penguin, 2006. P. 7.

      5

      Elizabeth Rice Allgeier and Michael W. Wiederman. “Love and Mate Selection in the 1990s”. Free Inquiry 11, № 3 (1991). P. 25–27.

      6

      Esther Perel. “The Secret to Desire in a Long-Term Relationship”. TED lecture. February 2013.

      7

      Casey E. Copen, Kimberly Daniels, Jonathan Vespa, and William D. Mosher. “First Marriages in the United States: Data from the 2006–2010 National Survey of Family Growth”. National Health Statistics Reports 49 (2012).

iVBORw0KGgoAAAANSUhEUgAAAtgAAAJ4CAYAAABfz5TrAADv4UlEQVR42uy9TY6jSvc8DMxZFovwEix1S96AvQJgZmGJSXpiySVPqiUvxXup4Xv7/0vem0/ePB+ZAMZ2hIS6ugpDAhiCQ5yILHtt5P9M5T9TpZzKDBiL+z/TjzNV2CUAAADATCid+/z2n2n/z9T/Mz1wTweA+VAECB83HbDLQLABAABWgL/Xzp0ljaHpt/17pSCgG2dZMcWkMZ8tHNK7s8up7O+nItZb4R4Pgg0AMxLsWwTB3mOXgWADAACsAEZ539oyBLQmPvMQrs1/P9skfnZ4OLgSn79PcF+o7Di4/XIHwQaA9RBsVLBBsAEAANaAL+V9a0MQ5PsTPjuQX+mzY+QbZYBc//3/t32gcKvlAAAsSLBbQYcNTEewoYEDAABIQ4hE+hNFdI8BUlsTxLma8LMU+a2J38feH0LL3+I+AwDrINjbhGWUiV/gmM+683JT4TV2hJbvz5spmkGLhM9NVcEuhO3JhX2RCX/TrCNj1lmMPPaasRSR26td19ixpi6H26Ylz0t/TLliP2u+f5ptLoj1ZjOcezHbkEfss3zC9RYTrVfzXebmKRT7ZM7xpxDJrbBvM6GCXDljPAWKTtrP9sxnMztOikSHyPEmcr9sibHlimNUCMcz5TqTj/y+FEoeMNX5ljP3n6m08QAIdqbReLlP3Q97cakUX+LQZ0/2YlIqLqgPRbXC3a6zp7lzl7MXbkAbO7a7s567lctUyhtBxVQ4NNteOfP+2P1cEH9390UZeJ36II7zzvv7UWjq6b39USv2R+HtC/c4XJzP+8fa35bQ3xumyefmzBdz7Cp7frjH/iocqxhd5Mb5/dkb44b4HpVOc9fZOaeGffhbObZh227evvz2jsNd+M7555wvI9sQN/xtYOzaZjSTcO5ptkPSpVZ2+9zz4SKcD9r9xz1sx67X3+d/AvPU3vfn4O3nH2afhK7FU45f+11KldodvM8ehWW7JHjMZ0MFlg1xHR6mrxEFnF/2GvLL+f3djrlSPLQcnG06eufDVrhXD9eXi/cdMMJnT96599v7e+/9/RF4OHTPN5ebcOvN7bru9vvifzeHc/YX3gYAcxLs0j6Vc/qxM3ESlkxjh9QgUkbq7dwLzXfgpiOtsxrZQDMsI8alhdr2KnDRdcnXmVhexVzYd9469t7fL4nbwzUUSce+Yva9ez5dFK9SN5muaZd6GNxl0zcIVYH175l1dInbxTVZFQGS4E+/mIqaNB2F8W7s9zH2/NE0bW0i5AQx2tdCOE7c+RCz/6qJ1huqkmaCzOHIXGv9fXKYefwp36VywreIJTPPmM+WinOtGiETqQLXgIfie04R7GPgXPIf3MqEaye3XVfGWGEjnHNl4A2C9toY66i2yQBgBoJ9DpywXwQ50DSGPJQXa+3NfjjxvxXr4L7whfe5u93Oh2KsFEl8EDo76ctbBchvoXgQ4Aj2b4FgG8X+vxPHdJPQFOS/KqUIdqW4YG6ZdYS0k5mwLx7EsY8lB5Xy3OfG599Eh4qL9gbWRhC9MvKmE3qTsEnY5o3i4Vp77lHnf8yN/zDifBhDsOvE9W4Df5fOg5bZ33dBxjB2/N8JJNs/r26WnB0duzytRjk07yVwXo35rJY8a9ehIdgPYb+HCOoj8rt6CxQpqkBz5Z0g6LnAL3aCtlwiyI+Ih8FroFD4237/H7A4BOYm2P6F++RdeLmn+5q5GVbETaMQLjy/vQZM95XjN/Fl2zAWSbvADeIY0HZfhKpdaKx94Ev8cHxQuQtAiGDnzH6dg2D3zHki3ThCY7w6x2Lwrc0VBPsR+TDinqeULRe3r31ycRxRyaAehoxz/mpugrfA685KcWPeEER146x/J3ynd1441TmSYLuVqYqodrnnTx54gN8I516haC6unO3gzt2KIYOhitmGIdj+eh8R56G03mohgr1VXm+qABFzx29GuintlG9TNAS2VFT4tyM+uye+C3finpxKsDfCG4LQ9/nh3dseBBEerg/aRs57QAKkuUZRBHsfuJ9y968fR2ZXKhpIQwS7Eq7dqGIDkxHs0NOt9HrrwHxxf0U0nsQ+2RcBgh36Qt2EShDV0FFFvkJ1HxYoF5GakWhUxN9Kbx3nCIK9jSDYVULVt2LI8i6TZUghgr1RLOegOKbfAQJOXeClG/QlovkldI63inkOgd4AzQPwQaimGmHspUIz2iQQ7I1inkq4pnDHvFIQbK0c4ivyfOi9qtyDeUvDFSRuimvtgyAccxDswiN/D/uWkhr/n8h7xSny3tUr3wrchQcmLUnejfhsQzwUaAn2ZsRDRxVxnw3dY2+M/p4iu9w1ai8Ues6KB5u7Ykz7SH4hEewxbxYAEGyVBtK/0fnd/P5J+B1xUSsEnfBYgv1LSXhCDh3D0/vBXkzugryBIyV3JZF4MLKIc+BGuhOIxrdAkjmC/ZvYnpIZ446RCEiv1kriYngXSH6p0JpTYwqdv1fv3C4CbzBSNZLcOXwI3OSoRqKt3Rdn4saXR647lmC3CRKRQiHh2BGkoVKce1uBBN+VBNv/3Nkhmu758M2cD48IxwiK6JjI9W4JGVXlvK34TiDYlff9+6Ucf0+Mf4xl6cauf2OnLUO6D08m2MO16tfMBPu38BZYWr72Hqu9prvXqNZeNx/CfShUwd5FPqxpHrJDhYsrIQsKvalDJggwKcHeKDxHH0RzzVb5hbwxVdyxBHsbQeTcL+5XpG5TGuc9otJbMdUe/wZVBchOJTQmbZ0LyJ0h2MeEY38i1ntSOq+kNJeWytd41I2yTNjOn5EEu1R+12Ib/nyCvVE0vi1FsDMFKWmJtD7NMakFgm2UBLua4HxIIdhj17uN1M1rJSJnb6y/Zxq/5r6VR5yz0n4vGTcLSYNdKqrrW0Z+lk2owdZIUELfqX3kujXXsU1ij8k5wUBhozyXesZdp1A04WvfwAJANMHeJVy0f4gnay3BPi9AsB8RThbDResW2aA3NcE+eL/rFK+cq8jjZhIaxELHrhWaX7MRjjGhV4VjCHaVeI4vSbCp7+ElcJz6BKL7LIJdEzfeR8LxkKzTdkqCvZngfEgh2GPXOzXBNt5D3Z3oZ6gm3G/ZyJhwatna+8gtMI/2s98TNjmOeUN2F6zw5iLYNVGEClWwD5EEW9NzoCXY34kEm7P3BYAkgh2qQvf2pAxNf5ybpPaV0p3RUc1BsLkL3j1wwy8dWczUFewYicgv7yKmtZDaJhLsa+DC3dvqvn/cv5wGF0p3WCQQ7D8E2WoUKWZaAhs6BsbeGELn+I2xpBxDsPcKzb1fWQstvx9p/7Ukwb4Tkq4/I8496oZfjahg98L50DPXgkfiw33sereMgxFVPeYI9sH7Hm8IwjJm/KcJCUspfM++FK411LG5jfhsSTS9TmXTp7EBzJnvdKpE5C58ZzbMQ+tB4VL2Lbw11l5Xb0z1XJKIbBUPBwAwmQb7PpJYbBZucjwHiF1NmPpLFyrp7z1DdCgSzBHREHG6e5rWXJkSOQS93OwN72DHfmAI9l5oIBl77GNukK1wnhyFJp2cOT5jqkep+2KruEH/Is4RIyy/F/bp4QkEO7bx6jDy9eyY7/LY86FitPQSERsTmb0lriWubv0YQbCv3vWmTCDY5cT3rSKi2c+/V8V+j9zx74QGP2nbL8L3/zCy+fN7xH22VJDIQiCqtSABiSXYO2bcvyMKK5WgbZeaHJc4r4EPJtgF0URVORe8wmmG8U+8L+FG9qW4EY4h2D8OmSwJW5+tMg73EGnt5S475A4gES9OuvBb6UogIcZFxLVrK7wGpkpx3FybNtfyTeODLd0EpH0puVqYwM25Ipodq8j43IrxfS4Z+0jKaUay4OoFf96BWHHHYQ6CLdnV3QWf99/M8ZA8rGvP5UAqHHwFXitz5wN3Q495I3cLkHPNeudwEaHm6yOaqr8ixq95aOqcxsPSS8zVBKpw4Uqc49KYz0r3lpRG5Ji3siEHpZviWv3L2cdSgePM+GSXCRKRnZBPQD3sPbx7thlp0xdTKQeAJB9sTpd898IfbkSct3+Sn5XhLVMQ7B/mFamko3540dTSk+yO0CWHbJBiNaQptl9jCDaX3nZ3Ak8eRJWxEvRsMUEzmqbZTqmd11Sg/FCXB1HNG0OwuUCEWkFWDfH5PkLb/lAGzUxBsKVt3ijCcR7Eubf1/MK1n9O+8pbOh4LZzzFv5Mach3MS7Ip5E5Q6/ikCmx5Mb0KhuN79EOdD6Ds+5rPUvelO+PfHIidkFpeEoBnNd/Xq7d8tsW3UNSqGYJeRWRo/yu2mCPbeKTocCJtTAJg0yXEzommlSkxym8oHOyY+VSIGmlfHvxIafWohGYuLN56TYBfKFEBKZ7uNTBDkziWpmbEMNPJQLhtlYix3yj6uIm5cw82hFBwAuJv8MZLk/wRI6hwa7NgO/ZJ4aKL2QTaiYTV0vsWeD0WiFKia6Dyci2DfBalVlXCuTXGtiv1+a69nXKz2MfGz2oTU24jqqDaBVVPEekTG3Evr9q9RMQQ7VKm+JHxftkou9BO57QAQ5T3NfYFrphJ8txcvyhvzQFgpHZiTtoy4KFNNjlWAGNfMOkPJVR0hMeEupgfhovNwOvVjKp9TGuEfmA5rfyy9cOx/MZ89MZ+NeVXaKqpFm0BE8MNWKjQe0DvmuN0jGxy57QpJjrbM92cf2KZt4OZ2Z5bBfX+5pqeNQPh7RUNUyBbyLhyT3PGj5c697QwE293vd2bdJpA4eo8oGGyY482ttxc0xg+Fo0KvINgb73jcFNeblPFrvkcnZpkXpXyrIK7x0n1h+Ow28bPufSEkj9pNQN7KhPFR5+Q20kUjdH15EFaH10zvVa3t1doz281xBqN4aDKBhEoAIG9apRc3XkZ+iUOfLyM/WyovSJVyrAXT7FFGbqs/f0GMp1Ru752wf4rd9srzgi0i9o9mHdLNhToempsadc4UEcdaez4UzDGc+xyPtQ8bc15S3+ci8pi7+6dIOA6l0kUk9bqjPfcq4ntWEZ/dKLWVmvOhUF6jYr6vMedhaDtjvu/UfipGXDOm/B5JyyxGLqdc6LPZyPvv1OOTGm9jxxj6TCGcV9L+0H5vYvlFQZxP1LURAD66Mv8dKX1ZCnd0IX8sPrFJJsV/e459XU48PwC8GxAHDgDA2xBsXMBAsEGwQbABAAQbAAAQbBBsAAQbBBsAQLABAMCFgm68Wxq4gIFgfxKR+/1Egn22D9pnJcEebDiPINjAh943f3B/AgAgU3SH/7aV6/2KLhQb2yX+i3GKAN73BrZ1jv3vDzj+lT3ft/bfDU4DAFjt9WnjXJ92uD8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwHuh+me6/zMdlPOX/0y9/czf6Wh/N+f4mn+mm13f3393inX+/btZcJwAAAAAAADAh+Mv2bz8Mz3+mX7svxqy+2NJ7vaf6bclrz/2b1Oi+Gdq7bhOdl1/11k74y2V49zNOE4AAAAAAAAA+H/EdKjsFra6+1CS613gb/sZyGtpiXVF/O1hCXTKOFHJBgAAAAAAACYn2KUl15mVUkgEeyDkGVFtftjlLIUNQer/jvGPMM4TTgEAAAAAAABgTkgEu1JUqDcLV4dLu77tQuMs7XJL5d8L+//QVCrX5c6fR4zL/3yhWAc3Fcw2FZHbUkUuI7QvyoT1lYqxAgAAAAAALEawfwuaZ5fwbhYc94/VZA/YzThOjryXjsa79NYz6MUfnt6dWs5vb77h54OwPQOJbAOfDa2v9Mb1IMZ7d0hraFxfwv6uAsv011cyD0OPiP2X2QeuH+JzV2jwAQAAAABYC8H+Usg/BsK2z5arYD88onyzDidzjLNkCPYlQBR9Ql46U0Msa3A+2ToV18JZVs2Q+40jj3ErtoPri7++whvTsF+agIwotwT/4P2+dEh4oXwwcSvQ3NuEznlD4Y/TMA9JW2eZ7ja6DwjQ4AMAAAAA8FSCPeiWd4rlfP8znbPl7AUfXsX4YSvAmUJPbrLxBDt3yGsZKavhNO0ZQxyrwPG5MwR8QKsglw9hGRyB3iRU/imCvVVIfXbEPFtmO4dj+BtfeQAAAAAAnkmwywiHkLPS7m+qMd8Tx3lJGGdo+QdmnRLBPkaOYXiA+BUg2D8R0pjdxAR72J+3iQh2jIQn9JCyFR4kfpwqPQAAAAAAAAg2Q9qWJthSlVUi2F+RFWyKABeCRjvzHggejJwjlWBzDwuxBHsbIeMIHQNNBXuLrzwAAAAAAK9CsP3llAlTpgigeVjJQ7YgwXaJosathJonZ+QN/ny+I8YPQ7B3EdaG5UiC7Y/rPiHB/rbHJ+ahZ6Mg2KVd9iODBhsAAAAAgBUQ7Iey6vfHNqdlzit8ykEi5PKgWUdHNNXFjHOITs8SKthDQ+NdIMjD/L0lv3s79ofggjGQ0huxj/YjCHY1kmBXdntC47pPQLBjqvHUtm+dZeztdLa/+wa5BgAAAABgDQQ7t8S5TnDnqCInifzsmQrk0OynHecuSyPYR0sMW8dBo2Lmv1uCd3V043dLtisiHn4giFX2X5eP+kkEeyDDJuBH3U9Uwc7tcmIJ9u8Awb7ah6FhGvb7HiQbAAAAAIA12PTVgnY3VqKRTZjcuNQ4Kd33PcFFpHQq1O7nfiUQ4CLCGSNVIiJJYk7M+bNhHopC47lYfXrqMeE02IPzzAVfeQAAAAAA1pLkWD4pyXGjJMVzjrNkvKuHSnYeQUp9OYSmAW9sk+PFyiRiXUTugr94x5w/+0iCHdPkWAeWLX2+mvlBEAAAAAAAQEWw/RCSjCBh5xnJ9SbCyq4Wxtln6dHsldILWkPkHo5mXaqsl0yToyZARTueOiARkjy2H8z5c2cq0pxNX6s8HodIm74SBBsAAAAAgDUQbMmW7tdM1etK0RAYM87fI8YpEbOH1+hXKW38Nh5Rph5SGoJQugT7xtjTPRS2gNTDSa+oQt+ZbdxGvk3YCLpyN+a9jCTYNdIcAQAAAABYAlrbuoGc/HIaE48zVQQ3TiWzjGyOnGOcEmH2ib1LLt2xbpwY8JpYx9GZf+s0RX4HKruF01zaOvHx7ucHAiyRSqpyPDxc/PG248uS+tYj2IVHvMsEuc7Wcf5w999eCNbZenaK/n7Uvg0BAAAAAAAYhWNE6MnGs2i7z/S6/e4QNM7e785UVqccZ6nQVLv2fyVjUXgRKtv+/FsnHvwiuIjsAvtsKzR+Zk4Fe89sv2+7WNvlVt5xGLa9U8pWygi7wrvdHom0h/Z7jco1AAAAAABLoVASMHf+waatmGE8eWQ4TbHAOAvFcoqAnlg7Vs24C+J3vpwidbul+XPluIqI0KDSaw6lxqXdnmLEfgcAAAAAAACAKB9sAAAAAAAAAABAsAEAAAAAAAAABBsAAAAAAAAAXppgH7ArAAAAAAAAACCbpCG0gjsGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AEo/pkqZyonWm6pXGaZsP4yYv584u0CAAAAAAAAABJ/ief9n+lh//2x034ksd7ZZQ7Lq4j5DnY+d/o7f22JP7X8uzM9iOW72yjNAwAAAAAAAACTkOu/ZPZkSWuR/VvN/vv7LmGZG/vZv4T