Ирина Петровна Никитина

Философия науки. Учебное пособие


Скачать книгу

Мерло-Понти М. Око и дух. М., 1995. С. 11.

      32

      См.: Мерло-Понти М. Око и дух. М., 1995. С. 513.

      33

      Там же. С. 146.

      34

      Антология мировой философии. Ч. 2. М., 1969. Т. 1. С. 609.

      35

      Более подробно о диалектике см.: Ивин А. А. Что такое диалектика. Очерки философской полемики. М., 2015; Ивин А. А. Диалектика: зарождение, триумф и крах. М., 2015. В последней работе обосновывается идея, что так называемая диалектическая логика является разделом современной формальной логики и может быть отождествлена с активно развивающейся в последние десятилетия коннексивной логикой. Особенность этой логики в том, что в ней логическое противоречие выражается не в форме «А и не-А», а в форме «Если А, то не-А».

      36

      См. в этой связи: Гайденко П. П., Давыдов Ю. Н. История и рациональность. М., 1991 (раздел 3).

/9j/4AAQSkZJRgABAQEAAQABAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/wAALCAArAh0BAREA/8QAFQABAQAAAAAAAAAAAAAAAAAAAAf/xAAUEAEAAAAAAAAAAAAAAAAAAAAA/9oACAEBAAA/AIyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/2Q==/9j/4SHyRXhpZgAATU0AKgAAAAgACAESAAMAAAABAAEAAAEaAAUAAAABAAAAbgEbAAUAAAABAAAAdgEoAAMAAAABAAIAAAExAAIAAAAdAAAAfgEyAAIAAAAUAAAAmwE7AAIAAAATAAAAr4dpAAQAAAABAAAAxAAAAPAACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhvdG9zaG9wIENDIChXaW5kb3dzKQAyMDE1OjEwOjI5IDAwOjE4OjM2ADxDQ0UwRjJFMkU1RTVFMkUwPgAAAAADoAEAAwAAAAEAAQAAoAIABAAAAAEAAAJYoAMABAAAAAEAAAMgAAAAAAAAAAYBAwADAAAAAQAGAAABGgAFAAAAAQAAAT4BGwAFAAAAAQAAAUYBKAADAAAAAQACAAACAQAEAAAAAQAAAU4CAgAEAAAAAQAAIJwAAAAAAAAASAAAAAEAAABIAAAAAf/Y/+0ADEFkb2JlX0NNAAH/7gAOQWRvYmUAZIAAAAAB/9sAhAAMCAgICQgMCQkMEQsKCxEVDwwMDxUYExMVExMYEQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMAQ0LCw0ODRAODhAUDg4OFBQODg4OFBEMDAwMDBERDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCACgAHgDASIAAhEBAxEB/90ABAAI/8QBPwAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoLAQABBQEBAQEBAQAAAAAAAAABAAIDBAUGBwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVBUWETInGBMgYUkaGxQiMkFVLBYjM0coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOEw9N14/NGJ5SkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQFBgcHBgU1AQACEQMhMRIEQVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1wtJEk1SjF2RFVTZ0ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eXp7fH/9oADAMBAAIRAxEAPwDnpJyg4s2N2Vls9wPY+3/rlgsU8qgWYFBDzY87G2MY4utLQHV+lZUGfo6qtn+l9iDW+kZFMv3D062w7WHhz3P/ALL/AOf/AOvK3c/Gyen4+NfU5uxwfa8gAkAPtZ+kbts/Tbt3u/M/fUPZtDq2Ol2j0NjaXZVonSXOG1m3Y7Yz2O+l9P8AnFqhnXbBLcJzPU9wP6NpIj2FzrbB/wBb3/8AUKp0v0qsCv1XP3WudY6usu03/R/my3/BsrXedGtbX0ikt9hdW11XqNcRrXXsc7b9L3fylHI10tUpGIDxbsLr9jSbKi2Cf0f6NxJA0eNj3VMbu/67/OJN6P1RxBs9U+6HAFolnh6rrPa53/Ef+TXabcoYVeO3PJtoeHNyHMcXWMY7fVVkw1u71GfostzP51PkMyrMl2RRnGgENDKtr3NadpZY9zXDbZ/J9n/gn82OLyWe8eweNHQbtwPoGACCHWl0/u79ttH0EdvR7xtiprS2NpayoOG36PvIe/d/K3rrqLM1lrX3Zrb6wTur9IsBaT++1jnfom/9uILKshtGXW7Pc9+TW9lTyLB6Ti7IdW6v+oy+n37/AFP0H/F+kOIq949g8jk9O6h6zhXj2ObDQXDZqTLnu+n/ACv89KnpuYRvyMdwcNG8FwH/AFt25dffTdZifZ6s51Lhbc5trRYXbbRkimmT/wBx/tGPt/8AC36P0/0fpu89TJeWdRY0O3bP0E7Jc1zPzffsqD6vf+/6v+D2I8Xkr3j2Dyn2HKBLRVkO7CHkD/OdZ9FO3p+XDrBitYWAnfc/e/2j3O9rrHent/O3/wBhdW85+4+n1ENbrAdTuI9znN93pt+jV6df/gir9cvtq+ruVZbZ699NV1rnNYWiAy8s+k1rW7GOZXvQspGY3sHier9Ws6cBTV6b8y1s1UsBcR/Kvn/Bu/wX+kWV6fUKanZ2W9zrL2Bz5aNzXFvu3ub9H07H+lj0N3/o1VysDKryib9t2Xa5rm72h4e+fU2WNc17H2V1/wCAY5nqf56MWXWh/rO9WytodTZc07oc43b7N+za2x9n6L2V2bPT/wBFUpgAB+a+ySb+jFrmutY31W1YDNzLHskkR7neta13s3OHqfTsrZ/NXfzqSvNqrcWCip1AYzY9zoFpMBm/6Lvds/w3q/4T3/pEkrVT/9DmfsubZUMmrHtNDiG+ttkAt9tvsZutcxr2Pr9T0vTW4ejnOrx8i54rbaG121O+k2lstrx67Zc3c7/CM9Or9NbZ/wAUtOlttTa669lNVLdlbGjcYA2t93sb9H936ai7CbZJue94Li8idg3n8/2bdvt9rfeqxl9G4ItW/HxcPJH2ix9zcjQVPcGFm38+ltIZua1v85/hFYowMSp1ORiY1xsraWi1rLCXMePd6j3e2z1P5zf/AKRJ1mLQH+9jSZc6DucT/wBJ67HpdOPkYgttrbYTthzxJj0645TTKh1ROXDWlvI5TLgftAxbfWr0qeWOLmk/T2bfoN2s96z68PJLvXtx7X2SW0g1POoILrn/AOk9+z02O2fpv+3l6OKem+pZWGU+pSA61nt3MDtWutbO6trv5ab0+lwTFEbd5Mtjbxv+l9D+Whx10Kz3vD8Xgvst7ADbRddc783Y8j+0/YG/9D/iaq0RrM7n7NYB/Ufx89q7jZ0oMa+McMe4Ma6W7S88Vtdu2us/kKTqOmttbS5lLbnCW1naHkTEtrJ3uS4/Aq949vxfP3Nvs3B2Ja10NJc1lhBk/nsfUz6G3+X/AMGgOxsy0hz8e/eDo/03kln7rtzf83d/N/8ACfzlvpDKOn2bvTrpf6bix+2HbXD6TH7T7HtUWM6XZWy1gofXaYrsBaWvPEVvDttn9hLj8Cr3j2fO7snqgc3DoosbY4H9NZVY4VjaXB1j9jmep+5WsavGyq3XPzKMj3Bz7Mg1WDdsG/eLtjPT2VM3elt2V/pbPU+gvXS3pjWBxFAYSWhxc0NJGpaHbtu5Vet00VdNucxja5ZYHOA/NNNxduj8xEZOlbo90no+XY2PdU+q6ir1bYdAcRsEkuo9Sy0epX9L/AfpP+E/0Vl1NhyBa2ndlWuc5zS0Vba5/Rm943fp/a307H/+Bfo09VQbTSyt/wBrDKy4s9QB7ne3bex3530tv6T/ANGfpTuxK31sbaTvrbsFtZLZA+kyD7PTd+fur/4RSEsoC+O4vqOS4bWtLhZE6Q7b6mwt3fo9nv8AZ+hSRdjmbX0uNbmfm/mHw3t+jsSTUv8A/9EDs/Ms0aRUJ4YNYO3b7n7kPZZbu9R5fPIJJB53af5ittqxxDQ71HjT2AvPw/RhzFPHDr3v9MOopZo20skvPtl1W7dV6f5qrW3Wn9mcay5rfOBAOoXoXQ/bgsB127B91dQXFWty6mkufuAHuFbQHH+Uxzt+3+p/012vRXNdgNc07mu2lrjMkGur3e73Jkzox5tg8/036sdUxerevayv08dlAfmNcHWZhrrzqsltjHj1GuzrMyi3M+12/wA5X+isu/R3Uy6R0brOGKW5GKbfV6VhdOudvq21PqOR63tfa5z6cdjqPV9Hf69llllK6xZ31j6lkdL6Jl9QxWsffjta5jbAXMMvZWdza3Vv+i/99IZJSNUNdGBxf2L1Nrrr3YZyGWY/VcdmE59QDXZuW/Mx73ONvptpycZzKMjZ+mo/0SPgdC6hj4+bg5DRflZVdBp61LHFllOLVgtsf6m3L9fEyqbsvF2Mfv8AtX87Xb9oRcn6y24mL1TKvqa5nT88YrGBpY847a8fLy73te/321Yt2TbXs9Pf6Vf6NGu6v1GrqWb04sq9Smv7bi27HFlmH6b5Lv039Kpz2Mos99e+m6u6uj/RuufYKcyj6vdUs+yj0m4dWJg4WLdjve11eS/Gvbk2VP8AR9f9V9JltVdtjPVs+1/pKfS9auyt0/6r9Zx+n9Ka6iuq3HycF92KHtc2r7MMlmV1J2raH5VzMmpvp43qP/Vsf1LLff6V7D+tWZkdO6VnOFLPt2ZRh5NLqrGvqdZQ7Iv2tdb/ADl93pfYP+6t9H88+1a31d6jl9T6PRm5jGVZNjrm2V1Tsaa7rcfa3e6xzv5n6e5GUskRZA3U8rl/VXq9nSacOjELXY7MprmWW1PFjL+oV52Pjt3W7GWNopZlXZX/AKC/pLbP0HWfWEsPTri8nZFhcW87fSv3bf5W1X1R6yJwiOZLtP8ArdyjMzIi+hSN3zXGh1hux2CvHAI/NDHOPvfYxrG7/U9/6T1HKxeXOcKoG1xBdZaYbsad9urN2z6P+E9NiA3HL7mvNQBY5rqrhtgVg7vRbWDu37nP9V21XbsPHvZ+stDmtBEOMNjmNjj6f+talLa1QYrWte+lpNzKnGuywv3EFh/wrXNrbvc7+eZUkjVXUMxA+h/qNHt9V2suPvdvd+/uftf/AMIkgno//9I1rHVQKb2+qAWurtc8s3HVjm/znpvZ/o/8LWo456jS2ut9Vdlbjo6t0ta3xmG/S/nP+/8A+BRcJj8XHDMh43klxM6knXj3f1fYn9fGobtYCGkkwB3d73Odu925301V/Fupn7Y2nvMLq+k/0U/1h/1Fa4ezqLYlpDQRo7iQfBzv3vortuiO34DXzO7aZ+NdRTJjRjzbBvIGbjYWVi2Y+eyu3FsgWV2xsMEObv3R+eEdDyWl+PaxrnMc9ha19YLnNc4bW2Maz3fo3e9MG7A1Ti9FJuJbQftQsGRLxFguDK8j1Rv2v9ZlNTLP+LSoxOi49dtdDceuvIY2q5rXtAcxjG41dbvf9FmOxlP9RVrcTqjiTX1G1gBaWA4U67dtnqbdnqtc/wDSVs/wf/CKYo6p6Zac52/e1wf9g/MDS19W3+XZ+k9X/raf/hfmpkzpn1dreyyunFa+t1T2ODmgh2O004jx7/pY1LvSo/0dauYWPh42M2jBYyvGaXFjKjLAXOL7NsF30rHOc5Zr8Tq7trm9SexzREfYDtJ/Oca9zd38jd/NLVx9worD3F72tAe8s9MucPp2elp6e9yEtvmtTNZ31gDj0q4MEuLbA0eJ9G/b3atFUetjdgObxuLhMA81Xfmu9qbHcJG75vQ/JotrFpddW4btocNzfzaxsLt91jZ/SbP0C0nlsFv7wh3n5aqnhYttW99x3WbWMba4+5wYNN20fvPe1FdLXwddNB3BE/8AVKctsLsbVVV6NLAyoAw0CPFySYEE+U8/yUklP//TpHNstsHpOaXGfdJLAQNzfUsY1+3c5rfTb9NXG9MyS/8ASWMNcOc11W4uk/QHpv2+xzXv3/pP/Pilb1WmsFg2DWQHRqdPfHta5zVWv6he5gsl7q3Tsc1pLOdrD6tbdmzf+jcq2vk3fNsUYVeK91uVcy5pYW1tewBw3a2e2bPpO/19i6rD690zGo2uvpIMO/nWtI9rG7XMI9u3auX/AGbZua655e2IcKgGkHtudaXe1OzFxcXIFwyHOLTIYdpjkO2+kGfT/lppAO+q2UBKnrm/Wfpj3OYy2pz2N3vaLmkhv7zm7U1v1p6TTYabb6K7Gjc5jshkgR6ku09vs965LK6tTUz7SGOtfXLGSY1d+ZuG76T2e9c1eLbbKn3Fz222773sguLidzJad/03/wDorH+hWkMYPgsOMDqX1Bn1s6LYN1eTjvA7tvYR/wBSkfrZ0YBxORRFZDXn12aF0bAfb+fuXneOybHWMrOPUSG1U6iGMDQDtdOx2npfo/0f86/9J/Oo9FOQ0ur9SKHPL3DUOIMezcId6W/+V+k9X9Il7cVe0O5e/P1p6SA1xvoDX/Rd9oZBgbtHR+6Nydn1n6XZIrupdtO10Xt0PMfRXEPortYGvbIAIawGBBEOlv0Uzca1hpZjO9Klry63d7nbPzWM3H972/8AFpcEU+yO5e5P1k6cDBsqkakeuz/yKDn9YwsjGLBbU2Nzv51rifZY0Na1vu929cq54Y0GS1sgTBgf1oTB5LgxzSH86ggkIcAT7Me5WBJYBxoPvQrQ1zmE6AnY4jkB3cfm7m2bHori3T8hQrQHtLTruESU9kYNJADTo5ssPxH0P85JM4lzt8+4Ru7Expp/Ve51b2pJKf/UetmH09xtN5teRFjdrTJ+j7f9FX/I/wDBFP7Xe4j7PV6YJ2sLzAk8NYDtZ7v5CBZfj4Nxv2l9bGSXPiRYSfTfLvextmz0W+mxnvt/64htbZZazDtM43pG6WnRznHY5vAe3ZZZZfXYx37irU3k9wLHVtyry51jtm1nu2mC7c/81jdNn819PYo/aMWtzm10G01k+oXne4Nb7G2Cpu7/AAjv5H+FVOtuTda+jJc4g+tUdoAbWW7Lay3T/C76vTQrHjFxq8hkMvyafS2cO1dvffLp27WP/wC3bqUqRaPqPUH5bqnbXPx2ODW1U6lz3+39Fs3b+fT/ALFn+mU6KrbKn+lRaTtHsDC2AZbWxrztb7/oMfu2f8Ig49bm47DW81uY5ttTmnbHpu3sf7d36P2N9L/iq1awrepWPrfusH2hu4PqhjP0T66mVemQ11fp5D6vp/0eyyqr/CVp3kts/azxcbM9TY5ljv0de9zqyxwcR7am1R+43f8A6/o3c3OBe9jCGtcwissMuESdlmjNv5//AKTRC7LxyGsbkextf81tcA0Ddj