Валерий Корж

Полный справочник пчеловода


Скачать книгу

короткой жизни ионов является процесс взаимного уничтожения разнополярных ионов (так называемая рекомбинация): противоположно заряженные ионы притягиваются друг к другу вследствие их естественного электростатического притяжения и, воссоединяясь, образуют нейтральную систему, лишенную заряда.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAHwAiYDAREAAhEBAxEB/8QAHQAAAQQDAQEAAAAAAAAAAAAABQMEBgcAAQIICf/EAFoQAAEDAwMBBQMIBwMJBQQHCQECAwQABREGEiExBxNBUWEUInEIFRYygZGh0SNCUmKxwfAzU+EkQ2NykqLC0vEJF4Ky05Ojw+IYNERzs+PyGSU1VGR0dYSk/8QAFAEBAAAAAAAAAAAAAAAAAAAAAP/EABQRAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhEDEQA/APfidRg/rUC6NRjj3qBZGpwjndQdHVYV1Vmgaqv25RIV1OaDXz7j9agz5/H7QoM+fx+0KDStQYH1qDj6Q/vUGjfgT1oNG/ADIOKDX0h/eoNG/AnJIoNfPyRzkUGfPyVdDig5VfthxuoNfSDPG6g5VfQB9agTN/APJzQa+kCfMUGfSBPmKDPpAnzFBn0gT5igz6QJ8xQdov6eecUG/n9P7VAu1fEk9RQORfEhPBxQdNX9JPPNA5au4UoAHBoHrV47g++dwNBy/eQr3knA8qBWLcCWipRz8aBN68hCR8aBD57bXwV4oG670AtQByM0GhfAk/WxQLi7AJ3FfFAmq8g8g0CRvOfGgTXegnxoORfgON1Bpd/yk+9QJfPv71B0NQYH1qDY1Bz9ag7+fx+0KDhd/GetBr5/9aDPpD+9QZ9IOfrUHX0jUBjecUCZ1CFdVZoOTfU+BFBo31PmKBP5/HnQZ8/jzoM+fx50GfP486DPn8edBnz+POgz5/HnQbF/x40GfSH96g4OoOfrUGDUA/aoN/SAftCg6TqEHxoK3TqTH69B0nU3P1/xoFU6lyOV/jQb+kg/boN/SbH6/wCNBn0mz1X+NBr6SD9ugz6SD9ugw6kBH16Dn6R/vigz6R/vig0rUWR9egTOogP1/wAaDf0iBGd/40GvpGnOCug0dToT0coOPpOFq+vzQbVqPakneKBBWqCf1/xoEzqU+K/xoNfSX9/8aDPpL+/+NBn0mx+v+NBn0mH7f40GDUuf1/xoO06j/f8AxoOxqAn9f8aB01qQZ+v+NA6TqVI439aAnb7r3/Qk/ZQKP3xUZ/duAT6mg5a1alx5Rccw2BweaDTOrULmY7z9DnrzQH4WokvhSG1hRoGc+8lLR94DnxNBHjqAKdwXcffQdK1CpBxvGPA5oMRqDvD7ywB8aB0nUKSnaXePjQJq1EE8BeQOlBtnUBK8lQxjzoEZGpEFWAvmgaq1DhRG78aDn6RfvUGfSEftUGjqHn69Bg1Dg/XoN/SL96g0dQ5P16DX0g/fFBn0h/fFBo6ix+uKDStRcH36BL6Rfv8A40GfSMDqv8aDPpIP26Dn6R/vigz6R/vigz6R/vigz6R/vigz6R/vigz6R/vig2dRY/XFBydSpHVyg19J0/3goODqMft0GjqMY+v+NBr6R/v/AI0GfShKeq6CrfpT/pPxoOkap5/tPxoFRqnj+0/Gg39Kf9J+NAoNSkgfpPxoM+kp/vD99Bn0lP8AeH76DPpKf7w/fQZ9JT/eH76DPpKf7w/fQZ9JT/eH76DPpL/pPxoE16m/0n40HP0own+0/GgSVqnn+0/GgTXqj/Sf71By3qnn+0/Ggx7VvBHec/61A3+lCv7z/eoNjVJ8XP8AeoN/Sn/S/wC9QZ9Kf9L/AL1Br6T7v87/AL1Bn0lP95+NB2jU3P8AafjQKp1N/pPxoFk6l4/tPxoHDOo+f7T8aB21qTaQd+ftoH6NaSWk4ZWB9tAlJ1W4+f0rhJ9FUCf0jXtA7z3fjQOIuoQg5Ln40Eltus4VtgKIXufP71AHueuTNV7i9qc8+9QDjqNJOe85+NBpWpckfpPxoFk33e3w5j7aDti8lasd7+NA4l3sR2xtc3KxzzQMhqQoSVqcwemM0CCtR7lZ7z8aDlWoMnPefjQa+kH+k/Ggz6Qf6T8aDPpB/pPxoM+kH+k/Ggz6Qf6T8aDPpB/pPxoMVqDAP6T8aBP6Rfv/AI0HK9Rc/wBpj7aDk6i4P6T8aBP6Rfv/AI0HK9Rc/wBpj7aDk6j/ANJ+NAn9JT/eH76DPpKf7w/fQZ9JT/eH76DPpKf7w/fQZ9JT/eH76DPpKf7w/fQdK1N/pPxoEjqTP+c/Gg19Iv8ASfjQZ9Jsf5z8aDStTZH9p+NBx9JT/eH76BNepsY/SeJ8aCt/nhX7ZoNpvZ/aNAr8+H9o0GfPh/aNB2L8rA/SH7qDfz6s9HD9woM+fF/3h+4UG/n8j9Y0GxfieNxFBv58P94fwoOTfVZ/tD+FBhvqv7w/cKBNd8V/eH7hQJKvi/7w/cKBI3xWf7Q/cKBNd9V+2fuFB0zd1ODhwg/AUHD11U2cqWTigS+fj5mg6F5Kxnfig4N5UD9c/cKDPns/tn7hQbF8UP8AOH8KDBfVZH6Q/hQLi9Efrn8KDtu9KUf7Q/cKB23dVEfXNA6Zuqs/XoHaLuoDAX+AoFW7sochw0HYvKx/nPwFBgu6snK6Dv55V/eUC7d+dJznnGM4FA3cvC28nJANAgm/YVySaDoXolWd5xn0oF0X5YAHeHHwFA4j31STkOEH7KBwNRspC+8cKln4UA5+8lwk7yRnigS+dz+2aDXz0RxuNBtN6Uo43EUHfzqr+8P3UGfOqv7w/dQZ86q/vD91Bnzqr+8P3UGjdVf3n4CgTVd3OR3h+4UCSrssf5z8BQJm8Lzyv+FBo3hWPr0HHzur9s/dQcruyv2z91Aiq8LB/tD9woOVXjH65oEzeVeDhoNfPK/7w/cKDPnlf94fuFBpV7Wn9cn7qDpN7UR9Y0G1X446mgS+fST9Yj7BQb+fFf3h+4UCZvbmf7Q/cKDXz4ofWWT9goOFagI6KNBy5elFKSHOufAUEOFzJ/WoO0XVWaBUXY4oM+dzQZ7cVc7uvNBntxTzuoNi4KPjQKpnq2ig37ctXFBntS6DYlHHJoMMsgdaBJcw+dAmqYfOgQXMPPNAiuYrzoNtXFbScg0HL10WsgqOKBM3PFBnzmSODQc/OKioc0Cntw/aFBntw/aFBgnDI96gcCcD+t+FB23OI6GgdtXEj9agdtTlZ60DtE1ZHBoFm5qz0NB37crOM80HSJpJIUaBbv1YB8DQLl5SBjvOcZxjpQM3p7iTyrdnpQIJnKKueKDtM0Z+t+FA4bfLmMHNA6jrKlbQcnyoHbzzbCdkhotrxweuaAU9J5ODjngUCXtR/aFBnt2OKDYn89cUHXt5/aoM9vP7VBnt5/aoM9uP7VBpU/A5VQIqn8/WoEl3D96gT9tB5KqDlU9IB97n4UCXzgR40HC7iT+tQIquBJ+tQaVNz0VQJKnlJ+tQa+cT+1QZ84n9qg0bmU45zQdoupNBtdx4oEjP3Hrigz2z94UCRnkHrQaNxPnmgSXcTQJuXBe0GgDIl+tBiZpz1oF2pZV1NAp7T60HQkqxQaVKVjmg2iSqgXTJVtFB2iUQrnpQKe2etBoyiaDXtPnQcrkjzoOO/wApzQIuPcHFA2W8aDbDxKgFdM0HdwOEpKelAPW+rFAn7QoUGxKVkUHftRoM9qNBsSjmgcJl89aBZEvPSgWRJNA/iLU5+tQEovLm1asJOM0EjiacXObBhryqgaXa1Tbe8A7z/q0DBYdAOVFINA7tsnZIbSpwq5HGDQWXplm13iySEuN7ZIyMkfEeVBFtV6TMFAeZX7viOKCIOlDDYUhWVmg4L54KuCetA5ZlKOAnrQPmJzkVwKKSaBzOuftvUYUBxQDosVyUpzKsY6UDV8KjO7SrNBoyeetBr2n1FBntPqKDPafUUGe0+R5oNe1KoMMnjmgSVJHnQJLk+tAiuT5UCKpSh40CS5h86BIzD50CKppz1oFPbPWg4XKzjmg59p9RQZ7T6igzv91Bv2rbQdLmcdaBFUzng0HPth86DFS+OtAmJnJ5oOFy+etBwuZ7vWgGMulfBOPWgchJa5V7w9KDpD/vZA2jxzQLFwZxnGelB13qk8EjI4oNh0q6kUCiHBQK9+BxmgzvgeAaDO8oNiQAMZFBhk5HBGaBMuk+NBgdIGM0GivPU4FAqzHbf6uAUHMmMGXNqFhXGcigTU+nb3bnJ6DmgaPpSkcUDQkmg4KlA0G+8VQZ3iqDA4c0C6CKBdDhT0oF0OnzoCsBxI9xIO/w5oCKdyMbiUqyPDrQSvTt9ENpYbBLiRwc0BJIF4n9y2+FkjOVHdQLtWCPbnXhcAHcp93HHNAlBs7aLmzJQykR/rFKk59aCc2qIgtuvNNJbTjwHFAA1Y17TF2pewPEZoKtmRnkubEZUlJ8E5oEXEuthJWeCfLHFA6YdQy82c4BHOeaA842svIU3teaxnaBz99A3eKFI74e4rpsPgaDcSWhhxKXE4yCFEHHNAwvIS2vvEK90+GaAWX+894cA0Gd6R1NBvvh50G0ug0CmRjjrQa3LoE1rUKBBbp5oElumgTLyscJyPOgRckBQwlOD45oGzj6h40CaXioZoE1OkUGu/FByp8+FBz36vOg77w+dBovqT0NByXiaDO+PnQa7w0Gd6aBJbp86BLvyk9aDReB8aDN25NA9ttpEnKXD3YSMlR8BQEF2v2d1tA/SBX1ceNBKrNoNu+tDuU5IPv4J90ev4UBad2UIatUl9JBcZGQATQVc62tpxSFAhQJBoOCSDjx8qDoKKODxQdbgfHmg2MjkUGd4RQZgq5oNgEGg6yaDBuNBnjhXTyoOT1wgHNAkpa0ndk+WDQaW5kbljafDNBy6FBIKgQD0PnQcJbUUng0CKsEkA8jwoEycdeKDAoHoaDM0CqFUCqVUCyV0BK3ysSWlhJPPNBI3nfaHCpsDw60DuC4zHbdWo++R0FARs9zRFaC2W1d7n61BOLGhu5ud7MVuQlOcn4UHGoWS0x3kZQbaShQ/Cg603qJSYq463QpZTgDxNB3dGGX4yA4lWc+H/WgFNxYsCBIcLQ3DpvoK+mS/bJauNqcn7KDlnIUoAbjjgUBtiR3aW0pyFEc0DaeXGErClDGd1APdk720rSFFZxkeVAm+tTyRlWfSgbrSUqIAwBQc9eKDWygXaaykUDhtrJFAqGt3QZoNmLvQTigYPsbVYNAgpkH1oE0sOOLCG+hPNAaf0JJMFD6AVFSc4GeeKCOzbS9BBLjahjrmgGFe7wxQJLz5UHGyg5UCOgoNc+VB2V48aDhawcc5oNb6DM+lBmfSgzdQJrCvI0CJSpR6UGijaraeD5UHeCgYIwaCz9L6NmTrVJbltbVbNoUD6EUBjSWhEwsCUhSlbsJJPrQTFcU6Pmd9GIU0U5WDQTO8RxdNO+2MN5Q8jCgP69aDy9quzG2XV4nI3OqIH20AxdvkvYKEe7jOaBNEfevHO8UHS2yhRynnxoOm/fUE4xQEI0VpQ96gbyo6UyFhP1fCgR7nyoM7pVAq2yspGE5NAuzE3uJSsYzQKT7WWHEqb97jmgYrZWrPu4T5+tAta7fGfkJElexOetArqLS71jeCUuB9lY3JIPSgCd0cBfdqAxgmgSWlSMlJGD4UCR56poOdg8BigwI5oFkIoFdpSM4zQLx0qk8bcUBOHannJRDiSjFBKbRpqVIdQCCEucIP9fZQGLjot60xlOvq90+RoBzTZjt4FAUYvT0eMW0eNA1dustYKFqy2aA3p1p5banWkBRAoJPa470thTi1ALTyQaCN6lnNymnYpBB6ZFBBocd1mQpDad4Csc0BWVaXERg+tO3nHFB1AhvOpK0jp50CcuUlxSm3E+8ODQDnAlJ93mgUOzuuBzQIbdwztoEyg54TQKtM5PKaB03FyAQKBdMYo5x0oFEI7s5KetB2EpwfCgHzWgMqx0oBrwUSAhPWglOmbUuIw5Kda3DOAD/AF60BqbqVcFhBLQCCn3R9lBDbvcF3dwo2BO/yoA83TT8ZrCI5eJGdwPSgAKjvRlEPNFv0NAhtV5UGwk+NBvZQcrRQJFHNBrZQZuVQcuKVgUHG5VA6btkgp3DoRnmgbrY2ObVHH7XpQP4Nom3BtbsZA9na6rUetAzVFVIdVszuTwr40HpAS33A1GjgFS+FBAoLP09plK7W2X0ZWkbhnGc0ADU9iUuG6juht3Zzjmgcaa71GmHmt3AGAPuoKP7T7e5JkJU03y3kuHHPh+RoIvbHHFwF7Rh0HalJHUc0D+Fp5d0cbQhhaFqPvnbQSO/9lDsG2+1REuuJT9bvMEnn/GgiLulpaNiw0UpKSTnwoBjkdxl0oUkj4UHKmVBYT1PjQYhorXtSCVZAH2mgsCxdksq9JZSk4cWAVcjoftoJRI7FF2yKgtrPeeIWQRQQfUOkZtu7xaglSEDJKB/jQMra437qXwcHjn4UGN6fbuUiR3K1JbRk4+/8qAJcbSpjdnlIOB7vWgTuM5+U2kOE5AwNvFAzcWsx0s4ISB49aBohhIWnKcjIyTQOjHYXnANANcZTvI6YoOe5T60GwlQPSgfQ2cqyocAUB2zx27jKbj7drh8RxQWDDszcgrQpID5/WHSgnttskeDaYZCu+eH1gn9XpQKXfSpukNakuqUMZCVH0oKumQFtPKQoYxQIoZUlGSOTxQdJjZGDnFBJLLugRFJKiCRwBQcxruuM6tKlYHrQC7u6JJUpGAo+IoArEdaFFYJBBoJbAktSbb3b4BVQcx22xHdSj3fhQReYyFZyOfOgZJjhCt3J+NAuhgKPSgXQwnGCOlAqIbSRuAOaDCyPBNAohpO0cc0DhpnCgSOKDUlQUcbQKBm+n3+mOKBm+3vB86BzbmGlyEJcH3UE4bfbbbDZCQjHSgEX+0NXhnCXwjYk7Qkgf10oIMm3u2+eN7hWlHTmgJStWriABpOBjkEGgjtwu4vC/07eD4FAxQMHYAQOKBqpgpPvD7qBIox50HJQDQcqaT60Gu6T60Ce0UGbQSBgmgO6U0oNSPrT3ndoQeePj+VAZ1LYpIkNx4LKy2hISVDqcACgSsXZxOuczEltTUVI3LWcZPpmgkKtEXG4RWYELcylSsfo+Mjjr91BIX+xA22FHK3D3ykgLwRnOOc0FuDRjNpeEljapwchJHNBJ7M6tA2vqDefBZxQMtWPNM2x/G0nHHrQVvZtSqaiKaPugnkE4oBVzMW6uukBBJJQoDBPxoACNHNmYl+MtpAbOShWAFelBc2gLLAuq2wqCyhwDBJSPyoLKuOkIrs