Александра Сергеевна Малова

Основы эконометрики в среде GRETL. Учебное пособие


Скачать книгу

гипотеза о совместной незначимости коэффициентов при этих регрессорах на 5 %-ном уровне значимости принимается. Оба регрессора могут быть исключены из модели, и тогда окончательной спецификацией будет модель с ограничением:

      

      .

      

      Рис. 5.2

      Тест на совместную незначимость коэффициентов также можно провести автоматически. Для этого, после того как было оценено исходное уравнение, в меню окна результатов нужно выбрать Тесты – Избыточные переменные.

      

      Рис. 5.3

      После этого в меню можно выбрать одну из опций оценивания: оценить сокращенную модель (аналог того теста, который был показан выше) или проверить избыточность переменных с использованием теста Вальда [9].

      Результат оценивания с использованием сокращенной модели представлен на рис. 5.4.

      

      Рис. 5.4

      При данном методе проверки также рассчитывается F-статистика и ее значение совпадает с тем, что было получено вручную. При этом приводится оцененный вариант короткой модели (модели с ограничением). Нулевая гипотеза состоит в том, что указанные на этапе тестирования переменные нулевые. Для проверки этой гипотезы можно воспользоваться рассчитанным значением F-статистики и сравнить его с критической точкой, как это было проделано, а можно обратить внимание на р-значение = 0,254184, то есть вероятность ошибиться, отвергнув нулевую гипотезу о незначимости коэффициентов, составляет примерно 0,26. Так как р-значение > 0,05 (больше зафиксированного уровня значимости), мы принимаем нулевую гипотезу, указанные коэффициенты не значимы на 5 %-ном уровне, и соответствующие регрессоры нужно исключить из модели. Корректный вариант модели – модель с ограничением.

      Аналогично можно провести тест на избыточные переменные, используя тест Вальда (рис. 5.5).

      

      Рис. 5.5

      Результаты тестирования полностью совпадают с предыдущими вариантами теста.

      6. Проверка правильности спецификации модели (RESET test)

      Для проверки правильности спецификации линейной регрессионной модели используется RESET-тест. Он позволяет определить, помогает ли нелинейная комбинация оцененного значения зависимой переменной лучше объяснить изменения самой зависимой переменной. Если качество объяснения при этом улучшается, значит, модель специфицирована неправильно [9].

      

      Проведем RESET-тест для модели

      

      

,

      то есть проверим правильность спецификации этой модели [файл с данными wage2.gdt]. Оценим предложенную регрессию и сохраним оцененные значения зависимой переменной. Для этого в окне с результатами оценки выберем пункт меню Сохранить – Расчетные значения.

      

      Рис. 6.1

      После этого включим степени расчетных значений зависимой переменной в качестве регрессоров. Как правило, число степеней может равняться числу регрессоров в исходной модели, но начинать можно и с меньшего количества. Добавить новые переменные