Маркус Сотой

Тайны чисел: Математическая одиссея


Скачать книгу

он получал бы число, которое при делении на любое число из списка давало бы остаток 1, значит, это новое число должно делиться на простые числа вне имеющегося списка. Таким образом Евклид доказал, что любой конечный список не может включать все простые числа. Следовательно, количество простых чисел должно быть бесконечным.

      Хотя Евклид сумел показать, что простые числа никогда не заканчиваются, его доказательство не говорило, как найти простые числа. Можно было бы подумать, что, действуя в соответствии с указанной процедурой, мы будем генерировать новые простые числа. Ведь мы перемножили 2, 3 и 5, добавили 1 и получили новое простое число 31. Однако такая процедура срабатывает не всегда. Например, возьмите следующий список простых чисел: 2, 3, 5, 7, 11 и 13. Перемножив их, мы получим 30 030, а добавив 1, придем к 30 031. Простые числа с 2 до 13 не являются делителями последнего числа, всякий раз при делении получается остаток 1. Тем не менее 30 031 не является простым числом, у него есть простые делители 59 и 509, которые не включены в наш список. В действительности математики до сих пор не знают, будет ли повторение процедуры перемножения конечного количества простых чисел и добавления 1 давать бесконечно много новых простых чисел.

      Имеется видео, на котором моя футбольная команда в своей экипировке с простыми номерами объясняет, почему имеется бесконечно много простых чисел. Посетите http://bit.ly/Primenumbersfootball.

      Почему вторые имена моих дочерей 41 и 43?

      Если мы не можем занести простые числа в одну большую таблицу, то нельзя ли попытаться найти некую закономерность, которая помогла бы нам генерировать простые числа? Существует ли хитроумный способ, который позволит, глядя на имеющиеся простые числа, предсказать, где нужно искать следующее?

      Вот те простые числа из интервала от 1 до 100, которые мы получили, используя решето Эратосфена:

      2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

      Проблема простых чисел состоит в том, что бывает по-настоящему сложно понять, где окажется следующее из них; по-видимому, не существует каких-либо закономерностей в их последовательности, способных помочь нам в их поиске. На поверку они скорее напоминают набор номеров лотерейных билетов, а не строительные кирпичики математики. Это чем-то напоминает ожидание автобуса: крайне долго нет ни одного, но вдруг они идут один за другим с короткими интервалами. Такое поведение весьма характерно для случайных процессов, как мы увидим в главе 3.

      За исключением 2 и 3, ближайшее расстояние между двумя простыми числами может быть равно 2, как между 17 и 19, либо 41 и 43, потому что число между каждой парой будет четным, следовательно, не простым. Такие пары крайне близких простых чисел называются простыми числами-близнецами. Из-за моей одержимости простыми числами мои дочери-двойняшки чуть не были названы 41 и 43. В конце концов, если Крис Мартин и Гвинет Пэлтроу назвали своего ребенка Яблоком, а Фрэнк Заппа своих дочерей – Лунный Модуль и Дива-кексик, то почему у меня не могут быть близняшки 41 и 43? Но жена не разделяла