Маркус Сотой

Тайны чисел: Математическая одиссея


Скачать книгу

классификация лучших форм для футбольных мячей: он придумал 13 других способов создания многогранников. Рукопись, в которой Архимед написал о своих формах, не дошла до нас. Лишь в трудах Паппа Александрийского, который жил пятью веками позже Архимеда, встречается письменное свидетельство об открытии этих 13 форм. Тем не менее они называются Архимедовыми телами.

      Некоторые из них он создал, отрезая кусочки от Платоновых тел, словно сглаживая футбольный мяч. Например, отсеките четыре угла у тетраэдра. Тогда треугольные грани превращаются в шестиугольники, а на месте разрезов появляются четыре новых треугольника. Итак, четыре шестиугольника и четыре треугольника можно объединить и сделать то, что называется усеченным тетраэдром (рис. 2.05).

      Рис. 2.05

      Рис. 2.06

      Действительно, семь из 13 Архимедовых тел могут быть получены отрезанием кусочков от Платоновых тел – среди этих многогранников и классический футбольный мяч из пятиугольников и шестиугольников. Но более примечательным было открытие некоторых других форм. Оказывается, возможно объединение 30 квадратов, 20 правильных шестиугольников и 12 правильных десятиугольников в симметричную форму, которая называется ромбоусеченный икосододекаэдр (рис. 2.06).

      Именно одно из 13 Архимедовых тел послужило основой новому футбольному мячу Teamgeist[3], представленному на чемпионате мира 2006 г. в Германии. Этот мяч, слывущий самым круглым, состоит из 14 фигурных кусков, но структурно он соответствует усеченному октаэдру. Возьмите октаэдр, состоящий из восьми равносторонних треугольников, и обрежьте шесть его вершин. Восемь треугольников становятся шестиугольниками, а на месте шести вершин появляются квадраты (рис. 2.07).

      Рис. 2.07

      Вы можете посмотреть изображения всех 13 Архимедовых тел, если зайдете на http://bit.ly/Archimedean.

      Возможно, будущие чемпионаты мира отличатся более экзотическими Архимедовыми футбольными мячами. Мои предпочтения связаны с плосконосым додекаэдром, состоящим из 92 симметричных компонентов: 12 правильных пятиугольников и 80 равносторонних треугольников (рис. 2.08).

      Рис. 2.08

      До самого последнего мгновения ум Архимеда был сосредоточен на математике. В 212 г. до н. э. римляне вторглись в его родной город Сиракузы. Но Архимед с головой углубился в рисование чертежей, которые помогли бы ему решить математическую головоломку, и совершенно не осознавал, что город пал. Когда к нему подбежал римский солдат с обнаженным мечом, Архимед умолял, чтобы тот позволил ему закончить вычисления. «Как я могу оставить свою работу в таком незавершенном состоянии?!» – вскричал он. Но солдат не был готов ожидать QED[4] и зарубил Архимеда посередине доказательства теоремы.

      Какую форму вы предпочитаете для чая?

      Формы стали горячей темой не только у производителей футбольных мячей, но