Светлана Бычкова

Бухгалтерская отчетность. Возможности моделирования для принятия правильных управленческих решений


Скачать книгу

Б., Андерсен Х., Кондуэлл Д. Принципы бухгалтерского учета. / Пер. с англ. под ред. Я.В. Соколова. 2-е изд. М.: Финансы и статистика, 1996.

      2

      Ковалёв В.В. Финансовый анализ. 2-е изд. М.: Финансы и статистика, 2000.

      3

      Таблица составлена на основе книги: Ткач В.И., Ткач М.В. Международная система учета и отчетности. М.: Финансы и статистика, 1992.

      4

      Ковалёв В.В., Патров В.В. Как читать баланс. 3-е изд. М.: Финансы и статистика, 1999.

      5

      Палий В.Ф., Соколов Я.В. Теория бухгалтерского учета. 2-е изд. М.: Финансы и статистика, 1988.

      6

      Рудановский А.П. Теория учета: дебет и кредит как метод учета баланса. М.: Макиз, 1925.

      7

      Гальперин Я.М. Очерки теории баланса. Тифлис: Институт, 1930.

      8

      Соколов Я.В. Основы теории бухгалтерского учета. М.: Финансы и статистика, 2000.

iVBORw0KGgoAAAANSUhEUgAAAlgAAAG0BAMAAAAcJkSLAAAAMFBMVEUqKiqfn5/X19dkZGTAwMCDg4NHR0ft7e3Hx8c4ODji4uJycnJUVFSsrKyQkJD+/v4Q5JDvAAAAEHRSTlP///////////////////8A4CNdGQAAAAlwSFlzAAALEwAACxMBAJqcGAAAIABJREFUeNrtvQtUU9faLlwquOtGGECtlvTySwCBBbgtVDRIeygiylK6Kd5Kqj0qEEGiZ4ta7FLEUgRM0W2EUDGEYRYLV/pC0GKLDdj+LWgEjR5LbTGp9KPWS0nd7rF7vjPocPzfl3/OBBQVNAmBADuTsJJ1S1aePPN5L3OuOZ8yOIrZ5SkHBA6whhes3J6hPJ5csnN7cnPHCVh/xF5OGMLDjD/0WDhOwGJiR6AEjA+w7o4EVjHHxgdYipEAi8geF2CNDLHY8QHWiBArYHyANSLEWkRljwvNYkZGscYFs+7mjwSxWCp7PIC1fUQUixoXzOoJHErh5uHy5MNYdlxoFsWlHywEKlza+P/wrr7dpgPwEh9BcO8faHzVe0C/N0BQocfYBysbRqBkZ48PzRohsGykWT32KIbcXJwyGVFm2UCz7hbZpSwqwoHtSIGVy9qGWSPiEg5URNljTrN67IXVooDcMadZ2+0FFpmdPdY0y37EYtnHMosyPgbaQdmNWVvtplhGJ3FQsHJeBeZ1YqA9MxvtpVl37UcsKvtxzKoT092c+yxiWdMTIlbNYaqPeqYt/Rk4GO1sYg3thVVfYDsoWHJxdSXQnp7toLjxFgE+np5kqAg+QI+blc8D7QXM89vbISHgzeVe8AFBJ0ACkdVJMJ6eumHTLLupe0z2E5gld/PWAzOpvIKYkcmLhOiy8pNxHFrFUWaoJ5RxGBmEiOXpOWkKQXhJwFSS5lErREohkVxevn64NKuH5g5UAgfcFNhvJfDBDZaXAPYJzNpVIQNgnECrXyWqc4b49pA58fq6A5z4ucGHg8Vb3WiVkzx9amNNM3SR3hisBpHvxLwSIvjwcGlWD4rOaXjgYcPCpR9cv/8xNJv9RGZNrsRgZWmnxVIIrOiO4sY4fdyKWw2FCA4p46a86LS5UkIwC7O6OrpJehZi1glBkQu15ePhYtZdCuxT2OwnMUvulMgBZnK4lGCW8twgmgyZs/dWePwtDRV8mG3xc/P92Un+VBiwC8IPGJmV3RAriyDKpsz/eLg0q8deYGU/mVniWjEwri/zOrzP/ORGacmQxr0/r4ufpgEMVqDTbR8nedlGqK5Y3bUQgwUNS06qRT+UZXw8XNawB0Yts3aJaR6HcaPei0xh69zgpghpVgQn7lbywuDDCinjulHpJE/l6UIiqV7NWhEFvIDqQ1UfD5tmjWZmscUbGTfYezKF/dCNKiGKG/eWEPG39rbWfBwsUzzF3+y0+ZDvweI5ijVGZlHHZVSESKuvOTxs1tCOzMp+vAcvl4GiLLYsI0PXPbtFsEoMvo17UyEOuQ5tkzN0ismEErkO21uCS1ZEnPMWCMo3JtezEUSKqGb9uNOsY09kFt0O7L68zssxoFyu27dPBEyhHwl+BDAvimMoaEcH0DEQSjy3jNGFdnZ2yvJFEMtFLiw5bNbQfsyinsCswUtfuPMgtrJhjw3tp1nUk5g1eAneMNDW9mHPlPaMRWYxOvvks+yoWSxlLbPslSm1I7OyMblGcw6efTKz8i9fTogZoR+aHdXMWpO2KPcJ1jCxvLzcnRoZZrGjOgef9r3mzPPHHsusxM7Onyof/W4Dpsgf85rtt84OkMA8RlEjq1mWW8MLBsqHJ1yW+xjNSkReXyVFP3cNaO5zHKCLuATkAZ1HE8DFLwj0Ai3Z0HeNzl9eXh7AgtX4GEUggXagBToQvl9G0Fy0mldUxA1ExwUSjzArm7KhZtEnzNKsu22o4hwoN2uRjgHyiSi7HjA4swByKqGr5WvOUXVLGbm3LEO23QlC3GvDQA1SkB+qSQXw/zMjiJKio5UTBZPBt4TXrHChVc8+DTUHZ/Fh1yQyLoVXv80Z3q9XHyhb241gTSQfuXaWtSGzFGrKHM36fW1CLBJlcxYJpjsMet5Y1bJa9BhmiWlpwIfpte7UpbC9X/iV0O5w031nGERQrlB3sCYd+dB/8k2lEjsQWG5cIZU8jZHSLv5r5S5QnHR8HfiWxUQsVMrqSuH9Rq62nugSAfswWJhZ7EOaRVOPVmxqgA1Uv3XW9IKlTWCx/Y+m+quBSbN+P2dFlKN4sezi3wdmFgHKSmUp5MhqW2FL6d5GyKTdt4oRWJQGSqjNh3akUlTN4Xg+xDUiEj4DaCsBDTEuK3S0kIiPCa9kfxDEuANI6pyp9xpBy4duEQVd5MN+FqqE1APMYheI4Fl02AtNTaGr2ySFL4jgo4R5TU3TatCCfI6gl4vuTC33Anl5CcnMm7caFhMz367OKMMu6v62p1LQnozyDuYzeG5x07wm4mq5LMD/RJPXg8w6Z5WH9fvtA9/kDmQNA2Br5bbJGg3mktItqKLtEO1eVe9eI+5UU+Ua9aEdEwWv+P/JQ6jJQFGH/BCrAVdgPdonySjw0C3lNq0SNUXETtJoJsycqPm6EeJPQpcgxauLfDSfRT3UIu2tUx5A31y1/IZP2UuJ9R56WLFYeqN7zvTZN3i3Gsi6STFtr/3oBN2rX2zd5XqjTech6uZoV794EHGS91XGC66EdvV36Uo3edr+pa53/FJeUnkFXXxH8oBm/b7BKrCyflqzKXcwZm2T3rhxvRaDtffi8rW00w+k+/YoYVlWxZ1fDtVs8vx6wZ+9X3/3zjQkXumgyXJBMLVPTgMI4m+iT8R5ySJiJ9x59x91Lne8jWB1//yC06OahZ3SB5nlTe4s1wF7ioA6J6rGuXgDK61Ohfcaj9xiPTgNC+MyYr4maXV+CmyVbHajoqd57BezS1m5M25jVGiyPPS/FCrFSjdtEpXjDFtOUyHNQXqq5AFraBWzfn9Bfb6dHdQayktZNqa2Gba5BfFxFTsD7sAt0lBSwNWQ9V7+J+1KSiECOBqGquEEgk2OcfHWQ/UFWdaJmq9aGxa5A1WEquH7CCxUDcmtmWYxi7ztgZh1SoQIi4Rzs3OOrLoU3pszXQ+Xpq2IOaOK0RDQleAGCl6dU2wD6cFDR+cvRmC9F7ldDZ+Egd8Ccc4EMQVKZzjCh82yoM/e3EQ9oFmnzW9/MnnwPYoVZa//ZXBriAWemFla6wS7kcAHqmOeOgfYT41AFW5Xek1qYOJzfwpJBe9bQF+6xhUSyTqFlOsilwBTfo4+ocxYGUHySKbSKPCgRcyK+cCla+EjxglhdexBZiXItBwTWOtgq1jRsm0dAuto4xE9IGbtT22IaSHg0rfOQM+ST1RLCQ8klnvUGgTW+43IGh6d66/WiJWT1kEvWEhEhG2nH9Csu7yMjIyycrMepRigfb+UfUo+zs/KqczqvqhKqi37XNCxt0JdSU/qQMwCUCNm1SHNUk/GrsNyIaouB4SaA6+GbFrRSrvQ3Rx61krk7/AKeeSStFVzdyHXoZFFzOoSfn26ixzIz3rQdfD+bo6RWYSJWWzD/MYdqX3MapjKMTLL4w0EFk/uVOTN8ehOAtXlmUZmKTCzVFN8ZDnuaUQvWHLnoLf3pRAPxIY0fa9j7pMeqYYen1MVvW7DwMzah+TyCuX3zmqi9rXfrkNoZycJUwCuoANj2ctA65jOznamg30T25kqGfL3nekXvhLBFTaUxEjHwj4qllCgTdvbIUcEoQthX2enaB/xSNbhYT+L9daIvHuroRvUOcPeDAIza84RPdIslZRVIc2CiPwSipHI3aiQeg8/CbRQ1UbNQq6Dx62SgGqZ0mlvGAZrSytV27pXz/JIa2PDb/ZkpFwzJ1PKoj+kWegJd8igHurxQ/V5MjXrgWKce9dY8Gu5f1C/AIll2YFiw+xseFCzPMQIFCNYdROveIfBzkmANasRMctj2vGDgMA6vd+FPv784lS5i2ci30PkrVdfSXZHgYP657YFJQsFl190DXVTSjFYSmlslz7olZcrCGtjwzXnp+Sanc862vxEv1mJDCJ97d7qzVKzI/BjOOnwkAe/hA9XEQ9+KwS5RFBCgtIF6uZCzcpaDlzV3dTBL6R6RUYS+JeV6ZRq9RniauHM0/FlFxoKAfZkPCX8lYorWxsRm4qcNQY5zt0ZlYSvUPOZ1bFhHmtBPoshn5w7eMDJZhNIs8OTgTSrX8vOIRSRwi63Xs/+XgCo5nLxE9rXV6tpbl+4g5coGkV7eo837iFGbw7e/HfDWYfBUzTyZ9A7KaY+TG1aQwwxNhyzmdLHpGjkrbiOCx8mKh0+KFh0+DjOwRs9+OxB77Ag7tWjBwp38DfkjuscvIlYY6kfvD1bd0yXPobusLBru2HuiN8VNnbbDbPH2l1h9rSGuU8Gi+bAlSd7xgFKcmQ0C+zGrGwz7jdUXPS78MS3qk36gTMWmMUOgVm5A4NlCiSN/ygy/U5zy7hi3MoO3CDHaC6acSljW7MevZOVwd2tFDeWAfvm5yQoOjtFSm7evkJY8C4R2tl5ORBtgKwbq0GhAz/ST4T7aj23moDYQO4VCkJJuh1iUYjmR8Jz7xLbdShcQy9DCRtaQ3ooRbF8+fLr1nUGDxjgtt/qVDqZ+CFFzdlc1iCmkzMy6vfqgcfxr4g4HS8oFwaXlUmI4hJeUt0h8I2M04N34YclvDDFGSpYAlB1OidVKauJBO3ZqhJea91B8G1EkXkyx4aa9XAveIsedWUCgbt1p8IAYNEpPpVbUwJqSn0jocLPhf1b/W69/ID+0ko6k5WXUjUbsmaJIgi5265nICQsjg8eom6SkSoyQeuCTm75wDmOv+Us8/X6uA6l07anIaQx7qTyKY7tNGto5b/mGAzf2O6GcvaHhvo6Z8iR+BVCSqgzYLDiEvUqESQQm2Ww4zCl8qvM3p6y7RkqJDJ+JesR2EKBSpGZ1ZKJTi5+RZxJbFlfFbU+Hza7bfszi8EqUHFsp1lDK//6HzYFC+oqiOqngRFmKaNkjCtxJHL3tVPR+igsO3IZ1EzWVCrLNZryXRM1X4fFVWgO5K8FNjEwrfp0GlY8waRmqDrnPX897OGF1U3UZETGNZ6IH6/Mguryhf5Pg0KTzbwjJbonranf/XPp7mtROEOFwNoheScldMLy5e9uc/fsjoz7xlOVLwboCszULspEdkpeMjkVtjR/U7UefFZt3ObkeTMyfnV6vA01a4hg2ZZZrPftubucKaXUp5BNXui7cXf97lX86bgafk/IZfg2w0tTKimIrUPVMCxuJXgUnacgUZFynsHMintL1iLaknauav0bFCPcZdSscP09sGx19731YJ21KVgKaaiEKYFq5+KT0C3yIN+P3F1B7L7lcRLOE/KNULOB7fLiEcymOizw8VjgVSKmRLFm7tZMo3VwjmvcMlFXtf5mISM0CXwFEXdrtGiWjZlV1YrvhjvTpq+rWOrqdwYJ/N5SmK73L2lIBSzwE8srCpdIk+diaxiJrKE3Xju9Vd3BnAEISd1cqpTUuEDV+hDpCpmJWRsp5GGMT83yWQg+pPKd1QDPNV1TXKPkupkcmEnCC593gOIaMHfueFGKd74SMddAqUMHv0EofvtKRHtS9EsUvNHBeMG3Si9Qdih++1zH6NlQnQ8Hv+f4tIassQmOxm1vBGVaMd0UHWDqQMj2rvbtokwLqrcfUr9dAdDv9PvMymbHkTUc1hQNbiEZR5o1vJlS3PY2jqyhg1lmgMWOCFh2Z9bY0qxsdjzFhsOsWXYOd8Yas8ZRbDjcrTtUdq7DGprbbmjfwSTHlJ/F2pdYY0yz7DxK6Ziyhsa7Gx3MMtcpNRgcmmUuWLl2BuvsWHJKDQ5mmc2sXHuDZRvNoixtCX/D89uXLG0Ct/tQ8DayhpaO8UILl3/OE1laDQ3jg1mWlrunewwFfzGMsWIjzbK09Jw2GI6OPbDO2gesVINhhoNZ45pZc+wG1owxN9HJvxzMGhvMcmjWuAbLjtbwmINZDs1yVEOHNXT4WQ7NcsSGDmaNZz/LoVkOa+jwsxzW0GENHbGhg1kOzTK7NLQhZvEE/3Qwy4yy4jK6Yr9ou4A15jTL9OsG/cUeYH0y1pi14//ByxMOa2hO+U/kORjurnNYQ3PK3dPYIv4vR2xoVlmK6+J/2AWsMadZhr3Hhv4T/9sw6//8T4Pht1yHZpmn8OcMBrGdYsMxBxa6ahxLO5hlVrlhrIkOzTKrzDhWcMxOYI09Zu345y8GRzU0s/xrw1yDg1nmXnbKuZEHi1Iga3iUZMccWon/HHmwCsoPIQ++XDbmwKr968iDdTTp7wbD7/4HxxxYvxtGHqz/XI+XW/5p+PcrfWDd5Zo7bQmxER8fR5o9zUnvg+6bSmdoMk3jOXloYiQehGkCIPSV8WrufbC2x5pdTqHTet6JtaIUDh2srFg7lZjse2DdteC0H1AN/GOtNZ9nA7c/315gBdxnFmPBaQs+Nhj+v1et+Dxi6Ddo/mEvrMjse2D1WHJewiaDIX6KFcSywVg0diMWcR8shUUn3jzWE26NYg19lKM/7KdYbJ9m3bXszIJ//pfM8s9bZIORHexGLKDuMcsyYsW+eW7LZ9YQecgD99jRFGb3TrptmWJh0fqmwHLJWmSD0STtp1j3JimyyBQay4rzVhFrqJplV8Xqm/6KG8hFj7xAXLh5eXnGxf3Su9p3BHouLuXe34U33DvDtKH30Pvb0QewQx8PnovejYv/+q7k/gXjzffWTR/P7X/Nffvu7en/9UwX2nvCvW+LjzaWQHztfcyi+g8pwDVnrAIl53EnDDhUATv0EXDv0jQY/2xTLBhnAY9n1atZjnl3njzvzmMmVnPMu/PwvDvs4FP2OeYKe+TaR5ZZ1JCtoZ2Z5dCs0cksG8w