Владимир Рафалович

Data mining, или Интеллектуальный анализ данных для занятых. Практический курс


Скачать книгу

ввести имя SQL-сервера. Обычно, это (local), но если ваш SQL-сервера не локален, то вводится его сетевое имя. На втором шаге надо отметить опцию позволяющую создание временных моделей.

      Третий шаг попросит ввести название новой базы данных, которая будет создана и, собственно, будет взаимодействовать с надстройкой и где будут производиться все вычисления. Название базы данных, естественно, произвольно.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAJvA1EDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDciiB61Y8iPHWmx8mpSAKoRH5MdNMEdS4GKURhqAIBBGad9nSpvLC004oAi+zpSG3Sptoo2g0AQi3Sn+THTyoFNxQAnkx0ht0pTxSg0AR/Zkpfs6VLxScUAM+zpS/Z0p/FHFADfIT1pPJj9acSKTIoATyUo8iOlBFOGKAI/Ijo8hKkwKQ4oAZ5CUn2dKfxTsCgCL7OlH2dKlwKQ4oAZ5EdH2dKcMUHFADPISj7OlP4o4oAZ9nSl+zp607ijigCP7PD/wA8V/Oj7PD/AM8V/OpeKOKAIvs8P/PFaPs8P/PFal4pOKAI/s8P/PFaPs8P/PFak4o4oAj8iH/nitHkQ/8APFak4o4oAj8iH/nitL5EP/PFafxRxQAz7PD/AM8Vo+zw/wDPFal4o4oAi+zw/wDPFaPs8P8AzxWpeKOKAIvs8P8AzxWk+zw/88VqXik4oAj8iH/nitL5EP8AzxWn8UcUAM8iH/nitHkQ/wDPFafxRxQAzyIf+eK0eRD/AM8Vp/FKMUAR/Z4f+eK0eRD/AM8VqTijigCL7NB/zwj/AO+RR9mg/wCeEf5CpeKXigCD7NB/zwj/ACFH2aD/AJ4R/wDfIqfim8UARfZoP+eEf/fIo+zQf88I/wDvkVLxRxQBF9mg/wCeEf8A3yKPs0H/ADwj/wC+RUvFHFAEf2aD/nhH/wB8ij7NB/zwj/75FS8UcUARfZoP+eEf/fIo+zQf88I/++RUvFHFAEX2aD/nhH/3yKPs0H/PCP8A75FS8UcUARfZoP8AnhH/AN8ij7NB/wA8I/8AvkVLxRxQBF9mg/54R/8AfIo+zQf88I/++RUvFHFAEX2aD/nhH/3yKPs0H/PCP/vkVLxRxQBF9mg/54R/98ij7NB/zwj/AO+RUvFHFAEX2aD/AJ4R/wDfIo+zQf8APCP/AL5FS8UcUARfZoP+eEf/AHyKPs0H/PCP/vkVLxRxQBF9mg/54R/98ij7NB/zwj/75FS8UcUARfZoP+eEf5Cj7NB/zwj/AO+RUvFLxQBD9mg/54R/98ij7NB/zwj/AO+RU3FHFICPyIf+eK/nSfZ4f+eK1ISBSZFMCP7PD/zxX86T7ND/AM8V/OpuKXAoAh+zw/8APFfzpfs8P/PFalOKjY/3aAFW3hJx5K/nQ1vChwYVqlcastoNrWF9K3aSGHcv55qe0uTeR72SSM91mXaw+ooAdHBCOfJXFJPLaWxXz5YoUf7u5wM/nVlQAMHjis2+jt5L6HzrZ5YUgb/l3aZQ5Zc8AHkqD2oAet5p88whgurd8/wrICfyqS9tkjtTtrNih017uGaDTWhKSFiTZPFj5GHUoB1I71qXjsbQ5OaAOcHGc07kjgUmC1P2v5ZC9aAAR7hwee4zyKZkhwoOVPQ9jXV6dd2SadCl3d2322NC1rK6mQWmOSJcNzn+EYbZ1PHFc3I8zuTcMJpF4aQvu/I5OfzNIBhXBrU09c4rJLEmtfTW6UwNTy6Kk3UUgKkQym6pGK+XuNMgI8nFZ1/dFP3ank0wJJb5VbaDzUX9psrcmssssY82UEknAAGea0LrR7u3soby4haOKZdycfz9KAL0V+svU1cG0x7hXLRtt+6elatncszLEe4yKANNTkU7DdhUDuUICjOaTbK/JujGPRVxj688/pQBKSe9AHFQ8p1cyZ6MacZCsLuONqlh+AzQA8oSM4pgBzV+5sPs9z5cur2kIPKiVNpI/F6nXSVeFZE1a2YMMqRHkEfXf9fypAZgHPOacQK1E0N3TP8AaMZP+zAT/wCz0Dw/MRzfr/4Dn/4ugDL496OK1v8AhHZuv9oR4/64H/4ukOgSf8/6/wDgOf8A4ugDJIHvTcCtceH5T/y/r/4Dn/4uhvD8q9b9f/Ac/wDxdAGRgUuR71q/8I9MRkagmP8Argf/AIukHh2RuBfr+Nuf/i6AMzcPejg+tah8NTrydQjx7QH/AOLpyeHJn+7qEf4wH/4ugDKCinYFav8Awj0o4N+mf+uB/wDi6cPDk+M/2hHgekB/+LoAyCB70w4962D4el6/2gmP+uB/+Lpv/CPyMcC/XPvbn/4ugDHJA9aVcH1rX/4RuU9b9Pwtz/8AF0o8NThhjUI8e8B/+LoAydo96TA962j4dl5H9oJkf9MDj/0Om/8ACNzkf8hCP/vwf/i6AMfA96XaPetj/hG5x11CP/vwf/i6X/hHZcZ+3r/4Dn/4ugDHwKTC1syeHZ1630WPaA//ABdRjQZCcC9TP/Xuf/i6AMrApvy+9bP/AAjk4GTfRY9oD/8AF0n/AAj8v/P6nP8A07n/AOLoAx+PelwPetdvD8o/5fU/8Bz/APF00+H5xyb6LHtAf/i6AMn5aOK1x4emIyL6PH/XA/8AxdO/4R6T/n9T/wABz/8AF0AY3y0fLWudAkH/AC+p/wCA5/8Ai6QeHpm5F9Hj/rgf/i6AMrK0uVrUPh+UDP21OP8Ap3P/AMXQPD8rLlb1Pxtz/wDF0AZZK0ny1q/8I/KFy16n4W5/+LoGgyE4+2p/4Dn/AOLoAyflo4961n8PTDn7bHj/AK4H/wCLoXw/MRu+2x4/64H/AOLoAycCj5a2P+Eemb7t9H+MB/8Ai6adAlX716n4QH/4ugDI4o4rZHh2Uru+2pj/AK9z/wDF0w+H5N2Dep/4Dn/4ugDKGCKOPetb/hHpg2PtseP+uB/+Lp58OzYz9tT/AMBz/wDF0AYuVoyPetdfDsp/5fU/8Bz/APF0v/COy7sfbU/8Bz/8XQBkjFO4rTPh6cc/bosf9e5/+LoGhSn/AJfU/wDAc/8AxdMDM4ppArX/ALBl/wCf1P8AwHP/AMXTf7Bl/wCf1P8AwHP/AMXSAycLS4Fav9gy/wDP6n/gOf8A4uj+wZf+f1P/AAHP/wAXQBlYFGBWt/YEv/P6n/gOf/i6P7Al/wCf1P8AwHP/AMXQBlYFGBWt/wAI9P8A8/0f/gOf/i6P+Een/wCf6P8A8Bz/APF0wMnAowK1v+Een/5/o/8AwHP/AMXR/wAI9P8A8/0f/gOf/i6AMnAowK1v+Een/wCf6P8A8Bz/APF0f8I9P/z/AEf/AIDn/wCLoAycCjArW/4R6f8A5/o//Ac//F0f8I9P/wA/0f8A4Dn/AOLoAycCjArW/wCEen/5/o//AAHP/wAXR/wj0/8Az/R/+A5/+LoAycCjArW/4R6f/n+j/wDAc/8AxdH/AAj0/wDz/R/+A5/+LoAycCjArW/4R6f/AJ/o/wDwHP8A8XR/wj0//P8AR/8AgOf/AIugDJwKMCtb/hHp/wDn9j/8Bz/8XR/wj8//AD/R/wDgOf8A4ukBk4FGBWr/AGDL/wA/qf8AgOf/AIuj+wZf+f1P/Ac//F0wMnAo+Wtb+wZf+f1P/Ac//F0n9gy/8/qf+A5/+LpAZXy07ArT/sGX/n9T/wABz/8AF0v9gy/8/qf+A5/+LoAyjikytav9gy/8/qf+A5/+LpD4embhb1M+9uf/AIugDIJBOBSgAHBzWwvhybbj7dGH9oD/APF04eHJ1Q775C3vbn/4ugDJwtL8tayeHLk9b6L/AL8n/wCLobw5cg4+3Rf9+D/8XQBiuRTAAw71snw9KTtN9GG9oD/8XQPDsqMEN+uT0P2c/wDxdAGUvyLgAflSrGjD5uKmvLZrG4MLzCYhQ24IV6k+59KrO4U4pgOflaQP+6KYB+tIciQbiAnuaRmUzbUOVoAcvKY2gH6VDPEzQlFHJqweDQ5wu4g7fagDFGmXPYL+dH9mXg5Ij/76rWSRJfuA4HXP6U75AegoAxv7MuSCMjDHPWnDSrnaPuYXj71aryJG2GIDHkLnkj1x6UjsqMu8GMMMguCu70Iz1HuKAMk6Zcei/nV+yt3hwHxn2q1jswH4U7IHSgCWiot9FAEVt80eawrkl9QnOM+W+B9K27VsQ1i3KtFeytjiQ5FAHZeEfCkd041W8dZYs7o4Ccr9T6Gr/ibRfEOuXHkxz2cVmDlELv098LjNc34d8RSaVOIXAa1b7ynp9a0fElvJsGo6brt0sM3zNGLlxn6LuwPwpAZuqeDtQ0mwkvJntDGmCwiZs4JA7qB1IrCspv8AiYp6L8v50+61G+nia3kvrp4TjKvKzA4IPQnHUCktI/MuFYDnOaANo/62fPSNsCpfst3JCssMIkBYYVpUG4fQtmoixWRt3WQ5NI8UeVdoxJjjaehFMC5e6dJBslYGNT96Jsfuz6D1qi52xXCNnhWx+Rqe5kNzCseFhgtziNFPGKqu7ywXMnopA/I0Aa3i20mOoQyJLCilDw06IfyZhTYNNdrC2ISJyyEbjIDnDueoJH8XY1d17Tbm+1FWihDEQhckkfMC2f5ipINPvI7W3jmjCkIcgHPO5j/IikBe06GS2scMqqf9k5FV4dZUzTQMSJEMmBtPO0kcHGM8dM1oRRFbTys7fpUFvpvlNCd27y7hrjn+ItuyPp836CgCC11mK5NmBbzA3Me5XeMgHnGfp0qSLWLa5jYwmRmWLzGGwjj0GRyfpmo4dKmtbq18u63JCvl4MR5U7eDz/sjn9KbYWNz/AGfbCa62yxQlERY9pQnGSSSdx49BQBea6CTKuRhIz5mP73aoBqSpD5twcDyzL/wEcU6awY20oA2NPIQ2P4VyQCPfGDS3OnRzPb5UbIDgp2ZOu36ZAoAf9qtzN5QYeYMHk8Yxn+XNC6jbP5RDcT48od+uOfTmqb6Oht403HcsgO/uRjbj/vnipDpaefdOGUb2Bj2rjyuc+vPPPagC1FdQT7PKIJd2RfqvWqFx4j0mC5e1lmdZ4pBFJiGQgMQCBkKRkgjHvT10cAsI5mhBXCbf4Dxlh7nA/Kq82hSTrfQm82Jc3UFwW8rJ/dFCB15zs68dTxQBYi1uxu2VbW5ZF+0NbMt1AyEOFLdypUYHcd6jfxRpMFsbgvMII8K8qwSFWZm2jYdvz5JHK5HvUNz4bS71F7l7kqPtq3WxFxnEPlYPPPQHtTF0a8fSl0yTUUe2tZIhCPsx3BUYNyd/zH5QM4H0oAtyeIdKt5BFPNJ5jsiIzQuFVnxtDnbhDyOGIPPSmv4isRazTEyhIOHkML7HO7btRtuHbPGFJqBtDkS9nWG5zbXU63EsBiyzMoUZV92FHyjjGajbwpJNJeKt+sBkljmjWCBo0R0cPvKlyGJIwSNuQeeaAFu/FUWbBdM8x2muhby7rKZvJ+Qt88fDZ+7jkcEnoDVvRdbj1u0nn8qSMpPLGA8bIMIxHVgB26c7SeeaiTQLgX8V1Pd+ZJ9q+0P5cexGxEY1UKScAZz1NPsNHvLCKWBL5Gia8kuGC221mEhZipbJzhmByNvTpzQBKPEumm1eZGlMEWPMmELiJyW2hY2IxIxPQKWz2ps3iDSox5pkkhi8zytssLrIrbdwUoV3AkDgY5qpb+H7ttGGktfIyWRjNo/2cqymMhlLNvO77oHQcVKfD08l5DdT3O+VbwXZaOMorYiMartJOAM56mgCe18Q6bdSxx20k0jStiMtBIoyBllJKgbh3GcirUeqLmSSTJhMmyPaMk4z2/A1Sh0U20dvick293LdoGwAzPvwvtjf+lTxae8EkDoP9TJ5i+/BH/s1AFoXcEhCrku0jRj03Ddn/wBBND3UcO3zvk3Hau5W5OM8YHtVIaZNDNGTKpgSVpfK8s8lgeCc4P3ielTJp8EZha1hjiWKUyhUjCAnbjBwBQA9b6CTY8WdrO0YyO4zn/0E0i6iFjlmkyY/MCRhBkk/SqraXcKkbJOCYZHmSPyyNzEHALZ6ZY9qsW9nJbiLynCGJ9ysyFsnBB4yOuT370ANh1WORcyrIwLyLiONnb5WI6KCcdOal+22aJ5pbKDAOOeSMj/PtVe10uazkEkd0PM/efO0RI+cgnC7hjoO56UlvoSxuwLsUEPl7T/HgEBj7jJ/OgCWXVrO3JEr/OA2AqMxO3GcbQf7w6+9PTUv37FyPK8hJVxzndkcep4H502004wS2rBipiikDv3kLHJJ/wA96p/2G4gSNZm/dxxopIzjY24H86ALkGqR3KsUinYx/fTymDD32kZx9RUVzq1tBCzqxLtE0sQCk5AB6nGByO5qJ9IkuHD3EiPmXzGHlEI3GANu7I9eppJNImNvJDFdeWjwCBgYy2VAPQ5GOtAFz7aUnVJD+7WIvIfTFV01eObfs8xYVjVzuUhuWYYx+A/OnNp0lxYzQyMVeVShbrgY2qfy5/E1G+lPM0rXFz5rSoqFfJIUbSTkgk5zn2oAnGq2wvYLWLz33xM7ZiI5Hs