на единицу: если в этом году 1 января приходится на понедельник, то в следующем году на вторник, потом на среду и т. д. Если бы не високосные годы, то с периодом в семь лет вся история строго повторялась бы: опять Новый год в понедельник, вторник и т. д. Но каждые четыре года происходит сбой: в году на один день больше, и мы «перескакиваем» через один день недели (если 1 января в високосном понедельник, то в следующем это среда). Тем не менее понятно, что выпадение дней недели на определенную дату – процесс периодический, и логично предположить, что период у этого процесса – наименьшее общее кратное периодов в семь (смена дней недели) и четыре (промежуток между високосными годами) года, т. е. 28. Это действительно так и проверяется элементарно (просто изучите календарь). Итак, в текущем году аспиранту должно исполниться 28 лет (есть еще возможности 56, 84 и т. д., но их отбрасываем – в условии сказано, что он молод), только в этом случае будет удовлетворено условие «день рождения у меня выпадал на каждый день недели одинаковое количество раз». День рождения еще не прошел (аспирант говорит о нем в будущем времени) – значит, сейчас ему 27.
3. Орел или решка?
Монета выпадает орлом или решкой с одинаковой вероятностью 1/2 (50 %). В эксперименте подбросили монету 10 раз и – чудеса! – все 10 раз выпал орел. Какова вероятность, что и на одиннадцатом броске снова выпадет орел?
1. 1/2 (50 %).
2. 1/2 в 11-й степени (0,0005, или 0,05 %), практически невероятное событие.
3. Определяется временем между бросками: если подождать достаточно долго, то события будут независимыми, и вероятность составит 50 %; если бросить сразу, то вероятность 11 раз подряд получить орла – 0,05 %.
Интуиция подсказывает, что не может 11 раз выпадать орел и, значит, вероятность его появления после того, как он выпал 10 раз подряд, должна быть ниже, чем при первом броске. Увы, интуиция нас подводит – она не ниже, а такая же, всегда 50 %. Предыстория процесса на нее никак не влияет. Это, кстати, никак не доказывается, а принимается на веру – есть такая эргодическая гипотеза, которую можно сформулировать и так: подбрасывание одной монеты n раз подряд и одновременное подбрасывание n монет со статистической точки зрения совершенно эквивалентны. Когда мы подбрасываем n монет, они уж точно друг о друге ничего не «знают» и выпадают орлом или решкой с вероятностью 50 % (для каждой). Эргодическая гипотеза не доказывается, но при этом безупречно работает в статистике, термодинамике, квантовой физике и т. д. Так что вероятность выпадения орла на 11-м броске остается той же самой – другое дело, что оказаться в реальности, когда перед этим 10 раз подряд выпал орел (или 10 раз подряд выпало «красное» на рулетке, или 10 раз подряд выиграть в техасский покер с двумя двойками и т. п.), крайне маловероятно – 0,1 %. В среднем такой результат будет получаться в одном эксперименте из тысячи.
4. Который час?
В ночь с 25 на 26 октября должен состояться переход на зимнее время, все часы переводятся на час назад. У Игоря в доме только двое часов, и те и другие электронные: в планшете и в телефоне. Перед