Наталья Сердцева

Теория относительности Эйнштейна за 1 час


Скачать книгу

считал его средством, условной величиной, которая помогла вывести необходимую формулу. Он много раз пытался вернуться в рамки классической науки и «пересоздать» уравнение без кванта, но у него ничего не получалось. Зато получилось, используя формулу, вычислить количество атомов в одном моле вещества и найти электрический заряд электрона. Это были первые шаги квантовой физики.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAPAAA/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoKDBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgD5gMgAwERAAIRAQMRAf/EAH8AAAIDAQEBAQAAAAAAAAAAAAMEAQIFAAYHCAEBAAAAAAAAAAAAAAAAAAAAABAAAgEDAwIEBAQGAQQCAQIHAQIRACEDMRIEQVFhcSIFgTITBpGhsULB0VIjFAfh8PFiFTMIckOCJKIWklM0shEBAAAAAAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8A+V5MrqzX1Y9dfDWgU5WbJaSdpNyDQZnIZ2MK5A8aBLKjlSN53C8npQKO7gSSb9jQdvyiLm/jQdvydWJ8RNBU5GAEMY8zQSMmToxHxoOORyCNxkWN6Dg+XufxoOGXKV+Y+cmg76j9WgeZoODsL7ifGaCTkyHUn8aDlyZNA5+JvQd9Rx+4696CDlcR6j+NB29zoxjzoOL5Bo5/Ggn6mX+ox2oI3uDZjB8aCCzdCb+JoOLt0Y/iaDhkfSTHnQd9RjB3GBpfWgqcmSZ3m/jQScjwPUQBregkPk/qMRe9BByOLbj+NB2/IR8xgHvQccj6bmtpeg4O4PzH4Ggg5MljJkUEh2kEMSPE0HfVfuRQcHbXe340Eb3n5iPjQW+q+2Wkk6GdKCu94A3HwvQSHYyCT5zQdvcmN58bmggZMgOpnvQTvyz8x/Gg4Pk/qJPgdKCDkfcZc/Amgk5H/qPlJoIOR5gsQR4mg45Gn5j+JoOORtAxPxNB2/Jf1H8aDg+SLMR3oO+pkP7j5UHb8usmPM0El8n9RI86CRkydcjDteg7e2u4tOhk0Eo7v1O3zoLF303k9o60BFyMFmTJoKnK39RjrBP50FS7kxuN+s0Eb26sdL360FN2TozQOs0HF31DG/UmggO8i5igne8XZiD2NBdMr7pEn42oCrkY/uYjqaAiZGIsxnuJoJZ8ogDIRHTvQUDZNxIYzPqv1NANspB+Yz3JN/KgGcrEfMw8zagrvf8AqNvGgk5MgHzHzmg5cmQnU+ZNAZHeIOSAOkm4oGFyOqj1GB0mguuRtZYfGg4O4JJY20ANB29xMs16CVOWVudO9Bbc39RJ7XoIfePSCb+NBDM4gsxgGZm5oKu7mIJ+BNBZMj9zPgYoOZ3UCGJnUSaCrZMu+Qxg2iaARLgiWaDMgH86ALNlgwxjvJvQU+o39RHxoKnJk6MSD1mgnc8fMaDt+T+oj4mg7e8j1GT4mgOudyAu8i15JmgYTI8TvPlPagPifIXSCSNw6+NA4/NJyNB6m8UAsvIBIm41mgXyZl6m/agHYiInrFBDYkMmB4gf80HDApMMov08KAZwYQ0JadIoBHAh/HQUFzx0HqItNAZeNjKyPgfOgIOOCIEEDWRF6CmTioYMKT1Gn5UA14Qkgi57aUFxwUNwCR26UFMnCXdYQBQVbiYyLxaxI1oI/wAJQLtbsaDv8EFZBk6gdqAZ4jA9e4oOPCYwN1+tBzcVwYB8vGgr/jPugD4HwoLrxMraizdqCW4GQEiQD0t+tBU8LIPlv4xQQeFlBJJA8R1oIbhZBMwFoBtx8qjQ9/xoKgPN1J7ig4oTcAkCggqRNrd4oJAcgQpAPWKDipXWQO9Byhj8oJB1oI2NOh/T8aCPE+RoJJNv4UETGt5/hQQCNsDWgnaTaDNBwJCkkQPGgrPwoOE/xoLW1JoOHh160HSfhQTA1ax/hQR5UET4z50Fh3j4UEMAAJMUEDqDpQdQWkjwoI1ub0HdOhHSgsAegAAFBIidL+FBYawNCL0HMxA9II7UFVKm14Ov8aDiZGmtqDhptHxoIk69Jj40EROtBU+Z8KCyekzNxQF3L1NvAa0F1cKdxYR0WguGJJOo6igl7gECAuk60AySL9tKAczYCewoKkAaT3gUETHT4UEW766UEgM2hFAdMahSR83QRaKAoA9Nrjp4UFwSw1ig4TP8aC+4gECCfxoOIGpJk9BQcW0JNu9BxYd7G09bUEFl1i3jQVZwbgkE6TQcpMAfuGsUF5WxI06UFXgDp3oBlWMi2lz0oBG5BJJGhIoBsDOkXsO1BUi86+NB146eJoOBk30oJEX2286AiWBLfN/CgZxECCPmHXzoDYyxZZPqkGBbrQJvyWLkk7YY+NBA5DxM2P7e1BP+SZEgkjQ0HLyWmetAQZ5BNz4CghuX6gAIJ6n9KCp5TEwVCiZYUHDLuJLGw60Etytp9RuLQNL0BsfJUDoRQE+viGreo6ighs+MkybdDQcuUaaSdNDQXDqNetBxzjXQ9qCBmYSZ297UEDIusgnWY0oLu6Moka+MUFbAAWHe9BI2Ei0eNBZtpEKYJubUASVmD5yRcUBFchRGot2kUBN57AfwoIJUH1DwoIJBgASOpiaDjtOqi1vGKAOUDaQPzMCgEoUPYCI6UBExBSAFHjFqDtl4IhaCy4yx0keNAN8a3Ai0yDpQWVB9OF6daCRhkCDHc+PegH9EAyAB4d6Cf8cXgADUiL0Ff8dYIIgxrQE4/DSJAnuT2oDnijYRFhcDQCgXycdFY+m0XBoAf4smw66UBhxQBGzXRtaDn4aETt1FgBQL/wCMBIAgHUE0FH43qhdP6jQVyYWsQJ6k0FCjCFIgmgt9B4mLd+lBLcZhGgn86Cv0HvbTqelAXHx4+aO3hQF/w0mxM9aAbcQdDPfd+lBZeIusnwBoLniKBdfLp+NBQ8Ubbm2oigsOMWEEQvSgqONJkTbUUHNxGbuI0NB3+Cfj0ig48H09QSdTeKDjxG6G466fhQVbhPrYDtQQvDckwYHlQc3AzSLwDoelBB4eUfNANBZeKwvEnwoIOJlMKPKgKiOFtHjQcUbQa+FBQodb+fSgg4wpJv8ADSgoxgQBHU9zQD2t2kHQ96CApm8zoBQERGVgQJ86BgY8h9UEdaCViYEeM/pQWALG4IjQUEiSe/jQWDAT6YFhQT4qNNSdKCsk62/lQd1AA9IOtBRskEgiCOnnQVLgidPGKCVYzFhHUUE7ouYvr3oJG6RMQ34UHFQ2kEn9BQUYQp9MEdqATTEad2oKEAXN6Cja6AeFB0+PwoJF/MdKC6NtNr95oD42G6VmOo6zQN4Wb6iACL60GZks7d5N6CDG6fzoO6+r8aCZtfQUEs8RBgjrQcckiT1OnXzoKEgkg69aDjAgdKCJuZoJUkQNKAivY2BU/u1NBa4mfwNBCksNxtBiaAyED1Tr0oIyAyS15vHQUAhka0G2utBZCwBb9puR/KgJ9bqOkQe1BQ5tIO5jaYoDrkNrnuek0FnyXN7G4NAJ90ekwNYPegGcuRTIuRr/ACoO/wArLAgzP7T3oOXNkL+qBMSNaC4yu0kNAFh0mg5uVkCiDKnp2oKNyJHrBZooKplyATYdL9qAy59TYg9dKDjmsvU9STQcuckAa9oNBZskXBJgUFRy9l4k9ekUFvrFgRtAmJ8qCy5IaxBHgaCVySZgz1NBYZd0gyRP/U0DXHbGqgEn+FAR8o2Ez6b0CmTKpY3vYA0FdTOtARLAW8utBzxEE6jXwoAFV3zFxegnaPxoJ+mvU6WNBQ4FuQLH40Fhj9MKAB1GlBU4l7k9IoKNiWbed6AiLYmACfwgUBkAM3179aCdgJuJHag50AJtAoOYCBOtALS/nEdKCQLeq06mgsAsT2/61oLhVa4Pl8KCSoAv2oI2qzQdep8qCDjUXnTt+tBZEWJmfPSgN9JIlrjsKCVxJu8x1uKCj4cYOgIjWgBmxjUG39NAEKghul586CAqgTru0NBLqFEAAQJJ70FdtxGsXoKBbxoOvWgsMZJkdLedB304PY6d4oI+jBkQOpnpQM48QiQQPCL0EnFMwRtGpmgDlxIYYHT8YoKx4xOgPaguqibCPGaC+0G4Ej+NBwUGTF/yoOOLoPhQceMvQX70Ef44PeI01k0HHhArKqRPfvQSeCBJAmdaAT4Y/bae9BRVC2mZvf8ASgsdRtHn4zQRaJI8+9AHJraTbQ3oBEEHWeooBkd/hQdcig4z+HWgsDPTWgMjGZURI/CgZxElkt1EkWNAlkPrabibHvegqTJ/QUEGCNP50EiwmJA1oOJXaZtGlBIMjQedBUtBM0HESdYjSgg69/GgkKZ7/wAaC+wgER0gigqGBBNzQFwRNwYoGCJ8zqBQUyhJNjAGn86AKqJgXnrQWx7SZ0NB2Sb2iR5zQVVLgEkDU0BN0G5t0BoCr6yLX/Kgu6GL2YXjpQJ5NswZB/KgF1gE0F0mRJEdTpHlQGUTboLSdaCmRpNoJ0I0iKARYx2H8aAoQFRtuR0NBVmDNZQp0JANBH02JjXwHhQWAAAWDrJNBfeIYRAJigruUdjPfpQdv/8AHXSPCgtOSdFHeKCQzCZ6aa3oLISRuBO4GgY+oFW0nzoKZMzQPHrQQOhgfGgKuwwRby6UF9qgSs3HwoKlVJaPzoICx1nxoJCiTJ6UHa+om02kUEnbYHrrBoIgEQp+NBGwGBMRaaDlERGo1B1mgkxr1PWgnGVHh0ntQRvMWIJnTwoJLNov/RoKbyTJ/K1ANy0EkGPOggZGEdSTaKC4c7SWvBsBrQGTKD0geFBP1e1oM+dBRswvaT3FAJ84Bg+oDU0F/wDIAWOhi2tBYcpZ8B170F05iboDQe3SgseWsWYeFovQCyZwdbdfOgVyZ0BI/ECgNhaEBj0kWFBzuZAMDrI/SgE2Uq0Ex/OgruVTLGx60BFyIwsYi8UE/UVhLHaDaTQVDgTMeE0B8ObvEx+NBdntcADrN6BXLkSywII+agqHAWDbxoLDKLAGwuaAi5EE2sbGaAiZk2teYNBIdQdLfnQW+qJAjrrfSgLjYAjsSPyoGk2MZLBp60BsmNAYgAHrQZnIiT/SOutAi+QbhfxjtQTu3LpY2A60FioAE2A6GgqU7/NoYvQCcMegPQ0AnTVp0OlAMa2160HSB4d6CwYiCDagtuO+TY9BQMYXY5AbXta1ABzDtfqbUFJsZ06d6CGnQ0EjZtJJ9RsBQQQKCRNptQVOt7GgkiAD1oOBjzoG+KikEgSehHSgMcfeCTQJ5kZWOgkUHYFvMadqBpfShJ1oKZCAsTNv1oARpMR/SOlAxhxebNHy0BdglYtHXtQDyIZlRJ/hQLvcybDtQMYSQoXXoKAjZFsCYjSgz8zgsYvN5oK2I1MUHKNxgxA69qAikiwMsexoKvcx17UHQdevj1oJ3KALQ3egKuH0sN9z2oLpiZbEET2oI+kQwGsjSgpsIEFQQNaAbBSwnr2NBZTYxY9KCykkHVo6igtDEkC5Ave1BZA4kqLaaigvja8FbdWoBv8ANZjE2mgsrHduE+JoLrm8bE6UEtnMRMz0oOTN1B1tPnQGRpsAJEbqAsCAT16UFMi/u0B60AtxUzFu2tBQ5AZm/YCg76m1vHXwoJbNJvYdTQW+ou3XcZ0HSgqGBi+49aC7hhAJ8jQWGNjafG9AE7lJgWGn/FB257iJkm3WgE4O30zbqaCgYkn1WGp7UBlaQCpgN1oJ3iIJOs7qAbZQ4IBgAwTQV3y0DXvQVYpuBMgHWaCjuoMKLjp40HI8G7XGp8aAoymAL3PwoK5XAHpkTcz+lAJdzOCbDqPCg0cOJ2QBRH/XWgu+NosP/wAh3oM/MoDmdBMAUAZ6C0d6CN0a2oLBryTraKCWHYnyNBAL+Ij5aCwbIxuxk9JtQXVIMFdsG57UENKyNLk3oBlyVIA/HWgqHcaEz1oLDPlJmbj/AKmgv/k5QtrUEf5GYmSfxoGcfLKrLX8BQN4vcQQevQCgM3NDLJ8qBDlc/GW9F28BAoECzM0nU3NAzhfdqSCOhoGAbX1HU0FbC4m/SgoUAtujdaKAWQSuny6dKAJJvbzNBFjpeKCRegusBpIB8DQHUy6AkDaQLaUC7kb3MdTQQJP/AFYUHHuTQdEC2tBG2YvQWAJi/kaCpmbaHrQcSLHrNBIBPQTQGwcj6Z2mIPXSgYbLj2gkjxbWgUyncY3SFt4UBsQsBpFAeFC2gDQk9aAGUxbU9qAW1iZMT1jSgaxHUdfOgMGkGxgax2oAO6i9oHegWyHcZEigtjyOsq2o/G9BxzswAuRcbqChBgmLakUAiTJFvhQcCZgAHwoJHpERfodIoLgCLmT3/lQEXHMEdidp1/KgIqGYIsP4UBMYnsANaAgEX3GDpQQ+6xFzHXpQLsqH9xIPw/CgA0giPTAsKCRF5aG/hQGTIuo6dvGgm0gAgTe350EjaEJBEnWdaDp2m4+HeghoLAE3HQUHSSb9elBVjB9NhPynr40ARlYNuA9Q1BoL43gkkGxsRa5oG0mFk27g0DCN6YPwIoLNISNJ1B6UCuUhSdpFxcUA9oWARE3vpQVsDBNh+6g5sLESTbo1BUytrif6dIoDYxeRoPxoGceP1C346UBHjRbjSgBtnS8G3agHkU7bUAijBS58hJiIoFw0v6iNpvcUEgwbmwuCf4UEMSRt6dpoIEGXsB0HjQduhdJ7AUFSzDW/eghS2mk3oIMRBEjqetBIfQT6RqKC0QYgR060DGJCclwe5HhQa/FwBkMaRB8KC+fjKokaAa96DG5YO7qAKBNtzdZoOgESdetBA8elBZW7+QFBKhiYKkjvQGxptLCARGlAVkUIBr1FAJiCNSSf2xQAJJa8+FtKCGEW+bxoIBJGn40EXB8KCZPnQcCR/KgIMjQZ66DpQQchvfQRA6+JoKm89B0oOXTpHWgLhMny1oHAEMAEAkXJNBxBidJvPjQULWggUC7GRf8ACgEwYmOv5UET1uKCdT3IuaAg2yYXW96Bvj7TkQ6X+FArmxw7TG6TQDM0HaH9aCbxYT40EMI11OtB140gjvQSASJOp0oOKmBYfGg4T1ETpQQADN9viaCNBYjxFBYGegPSgZwqds/xoCtt22PxFAHJkXWd3hpQB+qf2m15Md6CUzXEgADqNaCW5DTqb/CJoK7MjAteB170EASY2gmNKDoO70mW6kUE7ST6htOsdZoI