Владимир Кучин

Как устроен мир. Пирамида чисел Фибоначчи – Кучина. Алгоритмы цифровой Вселенной


Скачать книгу

именно образ, а не первый результат Ньютона. Крайне интересно, что Ньютон определил гамму цветов как минорную. Из описания из [8] следует, что «красный» цвет – это «ля», «оранжевый» – «си» и т. д. до «фиолетового» – «соль».

      Цитата из [8].

      Цитата из Розенберга.

      3.2.в. Числа 5 и 7 ряда Кучина

      Третье известное применение числа 7. Вполне согласуется с 7-ю цветами радуги, то, что в астрономии принято делить звезды по на 7-мь спектральных классов по цветам. Цитата из [9].

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQIALwAvAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wAARCAFPAk8DAREAAhEBAxEB/8QAHQAAAwEBAQEBAQEAAAAAAAAABQYHBAMIAgEACf/EAEUQAAICAgIBAwMDAwMCBAMCDwECAwQFEQYSIQAHExQiMRUyQQgjURZCYSQzCRdScSVigZEYJkMnNFNyofE1c4KSscHR/8QAFAEBAAAAAAAAAAAAAAAAAAAAAP/EABQRAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhEDEQA/AJxB/UXzLK3MpWh9w+TUocfSX6VpblqONbLyIzTlFVtR9Hb7WJPUkhQQAAOwe+XPMnjrXJcRzHKJjH+G10iyF1mhrurICpbSI5eGTs8jBAr78lQPQUPD+83OjxCnx+n7i2qOQt3I4artLNP8jFkTYduzEn+3okhAXG/ydAvUPeH3Zmx/6O3ubPBmMPeeO/FJbmAeFXZF/wBrMZCVk2igjQUgnt4DhhPcvmFi3dxR91s89OLtLFfgnsvJXk2dFmY9T57L0bqdEn+FDA3HlXObeMilynuTyiGZIVtvkY7rfBZBJiYaLIsSKGVm0Se3x6JBbQfUfMfdBr2Top7q529QrGCOnbmtpXuMGiPYKDpGAZJAerOdaPjzoFXM+6PuDiMXBPS5XnpTNTlp2rE2RdiZWm6xujGUaXsxVnIDDQ6ggb9AOw3vN7gZjPYOinMcmJf0+bF2aMl+eJvk+R9TwzvL1dvtA1JpgVb/ANvQfHI/6g8pV43caTl2crZuPJQ4xLn19qVVjjIDTFYzrvoqD4IDBiPkGthiPvPy3K8mry4/3C5AawptcnW/mZvp7G1UdHau7fEwKkhtbbYATw3oDc/urzfIZmlNg+f5i9is1KkFWzLmrMKlupdpJV0CPHgBdb6/g/j0GCf335nyG3RjxvuLkqz0LEb3alqe8jvEZm/uFgvYL0H4Zf4I/wDYCd/309wJeVZ0JyXMpjDcp4vGiDIWPir941MjLLGX330WUMAfuH3LvXoM9z3R9y1a9xabn1pbmOnNihkFytletQu2y3dvid0WJgyu/wDkAdtAhoyPvbznJXMPxuty3NjA0LEb38rPanhMzEhnjJSUswYP+4lQF8jYA9Aw8g9yPc5Vg4Z/rDmEGVeKavAtYwPLL1byyMbBWX7OvZ2K9djxs69BP8H72+5uTy/0Frl/KK+JmY4mreF0TWprXw9pFiQT6HbRAYllVu33Dx6Ajxr3v5NW5LXr0+YZ3JTR1LtnKVL2bt7CS9grQnt0YxK4J0wAH87HgPjG+6PP+S4jPZnG+7ORs5AWEx8UEmWsU4qkXYdZQyO6ad2gjBBb/wDGEt/HoOHJ/cH3p41JmP07keXrmOKS9BTuZ2SxJPVMfZvl3I6dFkVSQGRwpI16BdzHuH7w1eLQe4mc5VyHH4yneq1LYpcisSSrbkZJuq11fsFaEa6Av1BOwD6Bhwn9R1jMJRX/AF/yGzkZWr4qKzSyF1YbLOSDID5+8kBQApALeW15ADeWe4PM8tZvZnjnuFzGhQ/UJKFaqMndinijQqWSVfkbc6+fGwC2lDE7Uh/S8+9zcC1rFS87z1+s0n08d+zn7EbEBNdnCTsQOzBD9oKkr+47ID6ve4nvnxjiuUo8m90srYzKTw4m9NRuTxtWnldXj+UOqIoYBVEgK6DeR/PoPvhXu17sct5RcoZD3B5LRgr1lE/xZASr80a9W1qTsVP5BUEEg/nZIAVnvev3Hxsb8Ws+6OakvRRSGj+n5SX6ixI3ZizPKV8oFT7GXqQxAYka9Bn5F/URym/n5sLg+Uc0e5jPp47djI5VoHVJCifIFjcxudvK3xk+QgbsOuvQEM17789gs8Zt2efcs6vRlSeGrb+KCURyrG05dJWDj+5G2l8jr5128Bmre6XvVhrNhuR81zM9axaYm1HmHleKsFYAxV0cO7eY37oHAGx5P4AlY/qGyRwmLyEXuZyiJcvcqVbEa5BypfT/AC7lMikd1+FgFAK9dEDZ7ASzHv5zjhOVbFXObZC9FlKzS1a3zW7c1Nnj+NZpJdKrbXroAsA3bRJ9AJk97fdG3jadibm9ytFjIo6OVycV+w1eCWZtBuiSBuvSJdKSHVjJseRoO+R9xudcl5lLBx/3Z5Rh5KsMU8ElexaevWiEWu5Z2+F2dgxCMx0JNdiw0ACv7s+/qNXM3ufex9rJqt