нить ДНК. Вся эта структура называется эпигеномом. Исследование эпигенома на сегодняшний день, возможно, самое захватывающее во всей области генетики, поскольку именно оно выяснило, что гены могут переключаться из активного состояния в неактивное. А что, если мы можем контролировать эти переключения добровольно? От перспектив у любого смелого ученого-генетика кружится голова.
В 1950-е гг., еще до того, как появились догадки о существовании эпигенома, английский биолог Конрад Уоддингтон впервые предположил, что развитие человека от эмбриона до пожилого возраста не «вмонтировано на аппаратном уровне» в ДНК. Потребовались десятки лет, чтобы новая тенденция о генном «программировании» завоевала популярность, сменив знакомое всем утверждение о неизменности генов. Но в конечном счете игнорировать некоторые аномалии стало невозможно. Классический тому пример – однояйцевые близнецы, поскольку они рождаются с идентичным набором генов. Если у них в ДНК «вмонтировано на аппаратном уровне» одно и то же, то им должно быть биологически предопределено прожить абсолютно одинаковую жизнь.
Гены могут переключаться из активного состояния в неактивное. А что, если мы можем контролировать эти переключения добровольно?
Однако этого не происходит. Однояйцевые близнецы с вероятно одной и той же геномной ДНК могут сильно отличаться друг от друга в зависимости от их образа жизни и от того, как это интерпретируется в активность генов. Если вы знакомы с близнецами, вы, вероятно, слышали, что они говорят о том, как отличаются друг от друга. Для того чтобы получилась личность, нужно нечто большее, чем общий геном. Можно построить по одним и тем же чертежам два одинаковых здания, но приспособить их под совершенно разные цели. Например, известно, что шизофрения обусловлена в том числе и генетически, но если один из близнецов страдает шизофренией, то вероятность, что ею будет страдать второй, составляет лишь 50 %. Эта загадка требует дальнейшего обсуждения, но вы уже можете убедиться в неоднозначности подхода к биологии как предназначению. Эпигенетика зародилась тогда, когда генетика сосредоточилась на способах контроля экспрессии генов. Оказалось, что гибкость этих способов контроля, как и нейропластичность мозга, – один из самых ценных подарков, которые мы получили от жизни.
Притом что у всех клеток в вашем организме в основном одна и та же последовательность ДНК и генетический код, каждая из примерно 200 разновидностей клеток обладает своей структурой и выполняет свои функции. Нейрон под микроскопом настолько отличается от клетки ткани сердечной мышцы, что сразу и не скажешь, что ими управляет одна и та же ДНК. Гены запрограммированы создавать множество различных клеток из стволовых клеток, «предшественниц» всех зрелых клеток. Например, стволовые клетки в вашем костном мозге раз в несколько месяцев замещают отмершие клетки крови. У мозга также есть свой пожизненный запас стволовых клеток, что позволяет создавать новые нервные клетки в любой период жизни – прекрасные новости