Отсутствует

Столярные, плотничные, стекольные и паркетные работы: Практическое пособие


Скачать книгу

радиусу фрезы. Для соединения УС-4 S1 = S3 = 0,2S0; S2 = 0,5[S0 – (2S1 + S3)]. Для соединения УС-5 S1 = (0,4–0,5)S0; l = (0,3–0,8)S; S2 = 0,5(S0S1); b – не менее 2 мм. Для соединения УС-6 l = (0,3–0,5)S0; b – не менее 1 мм. Для соединения УС-7 d = 0,4; l = (2,5–6)d; l1 > l на 2–3 мм. Для соединения УС-8 l = (0,3–0,5)B1; S1 = 0,85S0. Полученный размер следует округлить до ближайшего размера фрезы (13, 14, 15, 16 и 17 мм), но не менее S0.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

      1

      Кант – сторона бревна, обработанная тесанием, пилением или фрезерованием.

/9j/4AAQSkZJRgABAgIAAAAAAAD/4QCiRXhpZgAASUkqAAgAAAAGABIBAwABAAAAAQAAABoBBQABAAAAVgAAABsBBQABAAAAXgAAACgBAwABAAAAAgAAADEBAgAcAAAAZgAAADIBAgAUAAAAggAAAAAAAADAxi0AECcAAMDGLQAQJwAAQWRvYmUgUGhvdG9zaG9wIENTMiBXaW5kb3dzADIwMDU6MDY6MjggMTE6NTM6MjkAAAAAAP/+AB5BQ0QgU3lzdGVtcyBEaWdpdGFsIEltYWdpbmcA/8AAEQgBZgD6AwEiAAIRAQMRAf/bAIQAAgEBAQEBAgEBAQICAgIDBQMDAgIDBgQEAwUHBgcHBwYHBggJCwkICAoIBgcKDQoKCwwMDQwHCQ4PDgwPCwwMDAEDAwMEAwQIBAQIEgwKDBISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhIS/8QA5QAAAQQDAQEBAAAAAAAAAAAABgAHCAkBAwUECgIQAAAEBQIDAQcNCAsMCAYDAAECAwQABQYHEQgSCRMhMQoUIkFRcdMVFhcyN1dhdYGRlJWzIzRSVVZ0odIZJDU2QnKCkrGytBgaM0RFWGJzk5ai0SUmJ0NTVGSDWWOXwdTko8PwAQABBQEBAQAAAAAAAAAAAAADAAIEBQYHAQgRAAECBAMDCAcFBAgFBQEAAAECAwAEESEFEjEGQVETIjJhcYGR0QcUUqGxwfAVM0KS4RYjcvE0Q1NigpOy0ggXJKLiVWNzg5TC/9oADAMBAAIRAxEAPwC/SFChQoUKFChQoUKFChQoUKFChQoUKOFW1TPabVkpGSCRwmUzSZKc3PgkOU4iIY8fghHdgRuv98Ur8ftv6isOSKmCNAKWAYLSjkoDGYwT2geaMw2Bx46imKsokD6bNyFMo1bqLFKfsESlEQAfg6RqpGbOJ/SksnrpMhFXrRJwciedpTHIBhAM+LIx+K3/AHmTf8yX+zNGi2vucyD4tbfZFh1ObWCUHJ1647cIeyFGB7BhsDjiUhUr2oJlP2btFIhZVMhZpCnnJiclM+TZ8eVB7PEAR3IErZ/u7WXx6b+zIQWw5QoYI6AlVB1fCFHDmNSvWlwZXSaaKQt3zJy5OoOd5TJmSAADxYHmDnzBHcgSnfu0U98VP/tG8JIqYTQCia8D8ILYUKFDYHHDuNUz2kKRXn8uRSUWSVQTAi2dogdYiY9nwHH5cR3IEr4+5q7/ADlp/akYLRHqIfD4od+GsEIHJg9Z+UKFGAOUREoD1DtDyQy2oTiIaM9LNQq0hfK+0sk04QSIueTlSWcugIYMlHlJEMIZDqGYC682wnO6oAdZpEmQw6cxR71eRaU4vglJUfAAmHNtrU76sqKZVJMkEk13O/cRDO0NqhihjPXsKEd2INaWeM9pCuFX9FaYKEbVVMJvUDw7FKaKMCN2SRzmUOUTCc/MHPQOhO0Q7IfriGakK60l6Qas1B23p6WTSbU+VsZNnOAUFuJVXKSJhMBDFMOAUEQABDqEA9flnG1vNLBSmtaX0vF3N7IYxKYmxhcywW3HyAgK5tcyso10FeMPXHCktUPplXk7pZZBIqEsQaqpnLneYVQUE2fF02Bj5YrA4bHGa1RakNbVPWh1COJCzp+q2jlBoxlUs72IVyCYqonBQwmOYB5RyAG7AifygEWWUp1vBVmP/Jy7+hePMOxBnEmlOs6C1+7zg21WxuI7FzfqOKBOcoCxlNRQqprQXsawYQoUKJkZGFChQoUKFChQoUKFChQoUKFChQoUKFAjdf74pX4/bf1FYLoEbr/fFK/H7b+orDkdKCsdMQWk9oHmjMYJ7QPNGREADIjDYFHLrf8AeZN/zJf7M0aLa+5zIPi1t9kWN9bdaMm+0BH9pL9n+rNHltgugvbaQKILEOX1ObhuIbIZBIoD1DzQ78MG/qu+O9GB7Bhkrf8AEX0c3aqef0Xam87OpJrTUpcTp8zlLdY2xsgIAoJVDEKQ5gEwBtKYR6wIaHuKjYfXzcWpLe2hpSpJeenmJH4uKgTRS76TMpyxEpCHOIYES9o/wgiEJ6WKkoCwSrShrWmsXStlcbQw9MuSq0oaAKypJTlCuiSDQ33Q+Fs/3drL49N/ZkILch2ZiHfEV1T3d0d6Za9vPZVOVjN0KxbMznm7YXCSaSrdIomAgGL4W4C4Eenb0iN3CJ4p+qjUTrRWs5qirwj5nUUjVWlEvSYIM00HCYEcFEoJkATAdDmdojnBYDNYsxLziZNdcyqdl9I0Eh6PMWxnApjaOWKORaBqCTmOUAqoKEWBrciLVYj/AHl1v6QbQXflTm4mpKjpcMvl75Fw39U01l0Tiohghkk9xwN4JumM9Bh/xx0EezOY+ZPXFSytH6z7r00mkJSs6smgABA9qQXSgh8mBCImOYs5hLaVtpBzVF4t/RRsFJ7eTz8vNvKbDaQeaBU1NDc1pS24x9MkvmzCcSlCdSdwV02dJFWRVSHoqQxdxRAfhAQx54hTp1409F6nK8r+3FH2SmkjfUdTExnyCk/epmF4q0EAMgZNMB2dTZEQOPQB88Orworyezfw+7aVa5ec94wlYSd0Jh8LmszC3yb4RKkQ38qKsaRlpNOnGduJbcRFBjOHdRysE+z7k+YuFW5fNuURx8kBxDEnWkSzzJolZv3i0TdjticPnZjGsMxFBU/KpUUXI+7UQqwpWtheJY6A+K9dzX1PK9t7dWk6ak6crZS6ZS1tIUlin2hMEU1d51Dm3f4RPGADHWAfuhzU7qMtjdmibR2+ulO6ZpSZSY79z6gOTtVHi/fJ0zgc5BAxikIUmCZxkwiOekQ74QlxPWLrakUmOoJU6qbqSY2OwRMZNYgD/LbkibvdM9tyPLdWuu2k3waXzN7J1Vg8YLpEVIA/K3P84xVCcfndn1uKWcyVXPVUfIx0tzZvCdmPSnJybUukMOoJSmlQFZCKitb5keJrEckQqvho8WOjpDRV56kndMTVzKVlpjOXI75pLn5UyqgsUB2HAonOIDjoJCj2hFlfEc0Bad7+2guLeOcWrZPrhIUm5Rls/WUVFREzdJRRECkA2zduyG7bnrjOIjrTHDNpLiiWRsXqqnl7H1NuZZQ7GSOkpVLyLLOlmaqhOZzTnACiBgMHUo9gRZQ4laD2Unk8zEXKayQoq8wOqoCXabOPKAj88WOF4eVNPNuJ/drumt9R7qRgdvNsENT2Hzck+ROy4Lb9AUEltYoCQAFBVCSBUboqt7mbqmQPpVdGgXsraDMGDhjNGzk6JBV2KFUSUAD43AACkn0zjwvhiavFgkXrh4dN25fszy5Cdzj/AFKiav8A/XFavAsnStlOJ1Vlj1VhBKYy+ayUEj9plWi4KlHzgVBT5xi2HWzT5ar0dXUp0Sbu/KRmiYF8o96KCH6QjzBiXcHUydRmSff5wX0mIGHekhmfQea4ph0dnNHxSTFCDKZTKytA6ftXtKgoLqSzV6yVMmbtXl78jspTfxkXxC/CBRj6AbXVHKawr6e1ZIHILMZpK5U7bLF7FE1E1TkMHnKYIo4ttQyt1eDFXrhu1Ms6tncFtPAEgZMRs7apNVQ/i7thh/iRZjwOb1HvbpNl716uJ31MsGlNucjkctRWBLP/ALB0fmiLsw5yTqmty0JUO7mmNP6apL1/DPtAXVLvONK7FkOo7gCAO2JqQoUKNjHzFChQoUKFChQoUKFChQogFxxeIfqE0VyuiKL0/Omkpe1aV4u4qFy1I5UQIgKRQTSIoAkAR52RMJREMFxjOYizs23IsKmHdBw8IvtmdnZzazFGsIkKcoutMxoBQFRJsToDoCYn4BiCOAMGfPHJrGvqFt5LQnNfVnKZGzERDvqcPE2qXw+EcwBFMVRa3uIhok1YW2mN7tVTytqfqyWyuoHLQwf9Hupe8HChATEhQIcgAfByAHUpR7BEsSn7otouU1povkVey162XcUvUqBzCmoU4gg4SUSN2D2CflRWDGg7LvOtoOZvUH9KxuFei9yTxnDsPnJlJZm6hLiASKi1KKCTWpA7+qkSBuLxaeHXbAVE5/qppt2qmOBRkBlJmYR8n3Ahw/THQ4gWp2ntLWnphqQmNMPZ9LZNOGTgWkuVKmdUqm8pB3GyABk5fnikm+Nj7QsuHZZfUXbunCMagmU1m8jqdwDo6gu101N7cwkMYQJhIo9CgAdfHFnl6Zq21XcE2QFTfILzGa0k1VMTmAJhctGpzGyHbnmNRDzjEeRxaanOVbIAUEZk0rvFb17RujSY96OsD2dcw6bZW4tpcwpl7PQdFeU0y6AhKiDUmlDaG8pXjO6/tUTNy+0X8OpSYsElRahOZguu+bJqgADtOoUqCQGADFHaJ+wQ8sS/1LVbqDJw6qluHK1HFI3IaUb6rLpy/YY8vepIFWXSJ7co9SKEDqboPb44hd3NDdNia2tz7SzKZpJep8yZzhFJdQCgILpHSOIZ+FunnzhFl9XIUpWVLTKkJnNmZ200aqs1ic8nUihDEMHb5DQbCQ/OyXrDjpJWCNwA1FqARR+kEYbs1tKMJkpBDbcutKq89SlpISqis6lAih0pFJ1Hair86q+FPfH2SLxVHPqhoWo5RPiPH8xUMv3o4y2OkAgIfcgwc2z2uRziJz9z43ICtOH6hSyzwTq0jP3suEhjCJikOJHRfk/bBvmivHhjyUwVXqG0lVEuUilS0DN2SZTmAAM+ZH3JfKA7xiRncz102jQ11bSzSYJJFODCcNiqqAUBH7qiqPXzpRQ4K+v1uXWs3UlST2gk/Ckda9JeDsfs7i8tKoAS06y+kAADKtCUGgG6ucwyunaXH078Y24lnlD8lnNlankRP4Iclds4Wbh8olR+eONwA7kBQ/EOlVOKOuWnVkmfSoSiOAMYEwclDz5bY+WCPi6uENO3F4aXqlRyAhMiSqfmMgbcUxSl73W6h5e9zZD4fhiL+hC5JbP60bY3BM4AiEuqVmC6omwAInVBJQc+TYc0VanfUp9DXsOHwJHlG5ZkDtNspMTgFTMybY/xpS5XwKh4RcJxe6dNPuHbfNZMuTS+oGDsPg2qsQEfmMMVjUpWTjTfcDTBrKl5Sosl2SYPTlDAqCwmK7NyT5WopfIeLaOII2ltSaDtRktK9QMIpLuSE5hcm5KLVXIB4+qcVZVFR7W5vBXpy4LZdMzy2txHzA5DCG5No+RRObAdv+FFGL3aRtXrvKJ1CAR2pVX4Vjm3oimmzs8JSY+7XMltX8LrGUDvWExf63cN3bMjpmsVRJQgGIoQclMUQyAgPjAQxFE+rS2ik84yl0LQJJgA1cMwapFH+Es7lBlUcfDzzJj8kWpcLjUHLb7aDbc1nNJ83NMW0rLKX3OVKVTntBFuYxgEe0wJlP8Ay4rj4i85Z2u47tH3KSXSFutNqbmKyhDgJTJgZFFTqHTqVI0S8eWiZk2H9xUk9xBjJ+iWVmcE2jxXCj94ll5I/iQpNPhD49zT3jCd2XuDYp6+3KyGbIzhskcevKdJcs4F+ADtgEfhP8MRw450smdhuJ6wvLJENik3lktnZDl6AodETNzh5xBuGf40EvC+nDfSNxna30+OH6baUzp1N6fQ3GAEjFTVFy1NnsyJEQAP9Z8MHPdMVDy98laq7kqcoKiUX8ocnSOU3bylkgHH/uxVuZncBKT0mlU8D5GN1JBnD/Swl1A/cz7OYcCFIqfFTZ8Yrn0uVI6tlqTtvcR5uQas6gYu+efsMkR0Qqg/MBgi7fjv24PX3DjqqaN0AUWph+xnCZfGAFXBE4h5k3Bh+SKZrmUagho4tVc9gQoKrTeeyldUhvCKKJmi6efGHRyfHmGL2K0mUk1bcM58Bpq2WXrm3orkLzi7gcKsd5egj2gqAfKEeYC2VyszJnekEd4/lBfSzNiWxvBdokWDby0K7EOD4gKiPHA/1U2rt3w0VZleS4stp6VUXUbuWHfTdflJkBbY4TLke0TGWOAAHUcDE4rJ31tLqLoRG5tla1bVBIl11G6cxaFOUhjpn2nDBylHoPjx17Q6RRdoWXRuLw+dUli3ShDKtJRLqvZEMbAlMzXEVjAH8QCBE3u5u7ptpjpbrO280maRDSGpe+UgWUAuE3KBBwGf9NA4/LFlgmKLXyEoQKFJvvqCRTwEYn0obAyzH2tj7a1cqh9NU2y5XEpVm0rXMumtLGIktHKmmjjoU/VLke9mc3qxu6KqHQORMg5Rx8wCuf5ou6uVIy1Lbef02cAMD6WuWwh5d6Jy/wD3ilDjXyJeg792qvfT6xCOHkiwBynD74ZP1hAfPsVS+aLq6KuFS9dUTKayYzZn3tOWSL0hRXL1IqmU4ePyGiXhKeTm5yV/vV/N9CKr0nqVOYRgOOJuS0WyetogfEqihHhhaGKm13kuLbRjfyb0k3kbBF6eQskzKozlUwqEIVUvMKUAIYpQyJTD4fTHjk93NZdc1PV9c/TdPQ5DtyghOkG6o7TEOgcW7guPL91S/mjBXwWNIepfTHqxuBWd17XOJBSM3ljlm0mUydIJ98KlepnSwlvFTAkA4gbbjHj6hBhpv4Z1eWT4p9VapaSu9SzGkyzF0+9QgOodd01mBFRMjnAEKJFByHU3tCeWKfC8NfY9XmW2zmBIV2HffcOqOgbdbY4bi/21gs1NI