«Шаттла Зет» были взяты из запаса деталей для шаттла, мы могли бы разработать транспортное средство быстро и недорого, а это ключевое требование для программы, рассчитанной на десятилетие.
Итак, у нас была ракета-носитель, но не было ядерного ракетного двигателя, для того чтобы хотя бы долететь с Земли на Марс или наоборот. Если отправлять наше оборудование к Марсу, не пользуясь ядерными двигателями, то потребуются два запуска. Само по себе это не было препятствием, но делало архитектуру нашей миссии по меньшей мере неизящной. В нашем проекте возвращаемый на Землю аппарат располагался над обитаемым модулем, который, в свою очередь, находился над частично заполненной верхней ступенью «Шаттла Зет», которая крепилась над еще одной почти заполненной ступенью. Эта цепочка была бы собрана на орбите с помощью стыковки и маневрирования в доках, причем первые три элемента (ВЗА, обитаемый модуль и одна частично заполненная ступень) были бы доставлены одним «Шаттлом Зет», а четвертый элемент (еще одна почти заполненная ступень) – вторым «Шаттлом Зет».
По ряду причин этот вариант показался нам не слишком привлекательным. Для начала, длинная цепочка устройств неудобна в использовании, и какая бы ракета ни доставляла первой полезную нагрузку на НОО, за несколько месяцев значительное количество топлива в верхней ступени испарится. По прибытии на Марс ВЗА и обитаемый модуль будут располагаться позади тормозной подушки – оболочки в форме гриба или тупого конуса, – и их станет замедлять марсианская атмосфера. Вес ВЗА и обитаемого модуля получился бы настолько большим, что было бы сложно изготовить парашют достаточного размера, который уместился внутри головного обтекателя «Шаттла Зет». Но на Марсе возникли бы еще более серьезные проблемы.
Когда стало понятно, что без ядерного реактивного двигателя не обойтись, я разработал реактивную установку, которая бы просто сжимала и запасала марсианский углекислый газ, а затем нагревала его в ядерном реакторе для получения высокотемпературного ракетного выхлопа. Марсианская атмосфера почти на 95 % состоит из диоксида углерода, который сжижается при марсианских температурах, если приложить давление около 6,8 атмосферы. Механически такая система производства топлива очень проста. Фактически нужен насос. В рамках такого плана было бы разумно предположить, что астронавты начнут добывать топливо для своего возвращения, после того как высадятся на Марс. Однако без ядерного реактивного двигателя любое топливо, произведенное на Марсе, пришлось бы изготавливать с помощью какой-то иной формы химического синтеза. Это было бы значительно сложнее, чем просто сжатие и хранение двуокиси углерода. Несомненно, НАСА вполне резонно настаивало на том, чтобы все ракетное топливо, необходимое для возвращения на Землю, было бы заготовлено до того, как экипаж займется исследованием Марса; в противном астронавты могут оказаться в безвыходном положении, если процесс производства сорвется.
В 1989 году Джим