была бы скомпроментирована разумность творения, премудрость Бога. Лейбницевский рационализм в этом смысле есть некий сверхрационализм, основывающийся на богословских аргументах. Но поскольку он выступает как философия человеческого познания, он может оборачиваться и титаническим рационализмом, как претензией на окончательное познание всего сущего… Принцип непрерывности служит основанием для переосмысления и самого движения. «Это же правило, – пишет Лейбниц, – имеет место в физике, например, состояние покоя можно рассматривать как бесконечно малую скорость и бесконечно большую медленность. Поэтому все, что истинно в отношении медленности или скорости, должно оправдывать себя и применительно к покою, рассматриваемому с той точки зрения и, таким образом, правило покоя должно быть расценено как частный случай правила движения… Точно так же равенство может рассматриваться как бесконечно малое неравенство, и можно сколь угодно сближать неравенство с равенством»[38]. Сколь угодно малое сближение неравенства и равенства означает не только то, что равенство можно понимать как бесконечно малое неравенство, но и неравенство как бесконечную цель бесконечно малых равенств. Аналогично не только покой можно интерпретировать как бесконечно медленное движение, но и движение рассматривать как бесконечную сумму бесконечно малых движений, а бесконечно малое движение и есть, в свою очередь, покой. Другими словами, Лейбниц как бы принимает классическое построение Зеноновского парадокса «Стрела»: «движение есть бесконечная сумма состояний покоя; но покой заменяется здесь бесконечно малым движением». На языке классической механики это означает введение понятия мгновенной скорости. Понятия такого же парадоксального, как и бесконечно малое движение, то есть скорости тела, находящегося в данной точке.
4. Дискретность как научно-методологический и метафизический принцип
Лейбницевские метафизические обоснования новой математики и физики недолго занимают собственно ученых. Идеал ученого-энциклопедиста, знающего и занимающегося всем или почти всем, постепенно, по мере развития науки становится недостижимым. Заниматься опытной наукой и одновременно обсуждать философские, а тем более богословские основания этой науки становится все труднее. Наконец, с середины XIX века О. Конт вообще объявляет эти проблемы ненаучными. Кроме того, разрастающееся здание математики и ее успешное применение к естествознанию и технике как бы несли оправдание этих новых методов в самих себе. Однако наиболее глубокие и принципиальные ученые никогда не оставляли надежды получить какое-то обоснование той метафизике геометров, которая была связана с дифференциальным и интегральным исчислением.
С середины XIX века усилия сосредотачиваются на проблеме арифметизации континуума. Несмотря ни на какие успехи математики и математического естествознания, невозможно уже было скрывать, что даже в геометрии мы, строго говоря, не любой отрезок