Николай Аксютин

Естественные системы. Концепция формирования. Золотая пропорция


Скачать книгу

Расширенный натуральный ряд чисел

      Существует определение натурального ряда чисел. Вот оно: «множество N, для элементов которого установлено отношение «следовать за», удовлетворяющее аксиомам Пеано, называется множеством натуральных чисел, а его элементы – натуральными числами». Однако отсутствие нуля в натуральном ряде нас не устраивает. Поэтому целесообразно вместо натурального ряда использовать целочисленный ряд. Связь между натуральным и целочисленным рядами определяется выражением Z = AUN, где:

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAAlgAAAAEAAQCWAAAAAQAB/+4AJkFkb2JlAGQAAAAAAQMAEAMDBgkAAAAAAAAAAAAAAAAFAAJJRP/bAIQAAgICAgICAgICAgMCAgIDBAMDAwMEBQQEBAQEBQUFBQUFBQUFBQcICAgHBQkKCgoKCQwMDAwMDAwMDAwMDAwMDAEDAgIDAwMHBQUHDQsJCw0PDQ0NDQ8PDAwMDAwPDwwMDAwMDA8MDg4ODg4MERERERERERERERERERERERERERER/8IAEQgBUAIjAwERAAIRAQMRAf/EARwAAQABBQEBAQEAAAAAAAAAAAAIAQUGBwkCBAMKAQEAAQUBAAAAAAAAAAAAAAAABQECAwQGBxAAAQEFBAkDBQACAwEBAAAAAAQBAgMFBhEUFQcQIDASEzM0FhdAMjZQITE1CEE3YCMkQiIRAAAEAgMGDw0DCQcBCQAAAAECAwQABRESBhAhMdEy0kFRYZKyE5OzNJQ1dZU2NyAwcYGRIqIzc9MUdAdAoRVQ8LHBQlIjJIZigkNTg9QWcmDh8cKjJUWFCBIAAgADBgQEBgMBAQAAAAAAAAECMjMQQBExcZEwoRIDIFAhgkFRYYHRIrFyE2DwEwEAAgADBgYDAQEBAAAAAAABABEhMWEQ8JGhsdEgMEFRcfFAgcFQYOH/2gAMAwEAAhADEAAAAO/gAAAAAAAAAAAAAANV72rAftOWtuSwAAAAAAAZPrZ+ivD9ZkWK8AAAAAAAAAAAAAAAAAAAAAAACC/Wc7z37flBdsWS7Y8gKAAAAAATl4/p9g6W1IeGk7vjuAAAAAAAAAAAAAAAAAAAAAAAgv1nO89+35TaEfu9a/Nu5+u24Qssu3RWm7LqCtHo8lTyUq9FaPFV9w5PzUiP00JMnl50AAAAAAAAAAAAAAAAAAAAAACC/Wc7z37flJAQ0r1E897MaypWMNtdw3WwdsyYoS6rbDql24VNVUu2nW3DldjVpFK27sVlxbww5P1trErpoKXvMzoAAAAAAAAAAAAAAAAAAAAAAEF+s53nv2/KSAhpXqJ572YqQosuy66mZFrNa213PdTK1NBW3bYuphdFzq0xbWYl9uysOT9baxK6aCl7zM6AAAAAAAAAAAAAAAAAAAAAABBfrOd579vykgIaV6iee9mAAAAAAAL/AIcn621iV00FL3mZ0AAAAAAAAAAAAAAAAAAAAAACC/Wc7z37flJAQ0r1E897MAAAAAAAX/Dk/W2sSumgpe8zOgAAAAAAAAAAAAAAAAAAAAAAQW6znefHb8pICFleonn3ZgAADB6OMWPJ3Wy46AAF+w5P2trErpoKXvMzoAAAAAAAAAAAAAAAAAAAAAAEF+s53nv2/KSAhZXqJ592YAAA5CY78nJeXWyYuoABfsOT9raxK6aCl7zM6AAAAAAAAAAAAAAAAAAAAAABqCR0uenb8pk2DP0i4TraAqAC3n8/uPJN+6kWaO7N9gA9l2xZK0RK6aDl7zM4AAAAAAAAAAAAAAAAAAAAAAALWrETpISZHNzVAVAPiup+NFqpXKDBlc5UAFACI3TwUweYnQAAAAAAAAAAAAAAAAAAAAAAANRyOnrTe1Psx3CoBhezivmG+8WXAAAAfFkt2RpbW343dAAAAAAAAAAAAAAAAAAAAAAAAAAAET5mO2/H7e0dbMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABE+Zjtvx+3tHWzAAAAAAAAAAAAAAAAAAAAAAAAQ9mo2qoAAAAAUBUBrPbwZTgyZHjvAAAAAAAynFfJiK3gAAAAAAAAAAB4KAAAAhJOxc24KUAAAHo9AAAAAAAA8FAAAAQonYya8FJgAAD0egAAAAAAfgQd63nYudFB+AAAAAAAD2S15mfmny0/+gAAAAAAPlOaHe8hqmS0AAAAAAAB+9Kzd5HpZU8/MegAAAAAC1q8fPUfP9TSWj91l2yNHc90AAAAFQUAz/T2pb8t0P3kkYOUqAAAAACx328J/YfM/wBKVu+LJsHS2qgAAAKgoANvxkhJTnZvNMGXeEVvgAAAAC1q8fPUfP8AU0lo9MeC7GScDLgAAAAAAfVbW94cmspDTxLNjkDEyAAAAAAsd9vCf2HzP9KV61eb91tqM3gAAAAAALhZddMV8TulhNzRMjtPQ2gAAAALWrx89R8/1NJaPVTzvt94REiAAAAAAB9Vtb3hyYxsYdHyWlJ6FkwAAAABY77eE/sPmfulex/l/oGbamwAAAAAABcLLrpivjL0EPkWtnkBESIAAAAFrV4+eo+f6mktHqp532+8IiRAAAhbbXR1KzLupvitAAPqtre8OTGNjDo+S0pPQsmAAAAALHfbwn9h8z90r2P8v9AzbU2AAAOd1l2ME9brdh1AAXCy66Yr4y9BD5FrZ5AREiAAAABa1ePnqPn+ppLR6qed9vvCIkQAAP51MOT+gPJZ/Onjyf0qZsQAH1W1veHJjGxh0fJaUnoWTAAAAAFjvt4T+w+Z+6V7HeX+gZvqbAAA9H87mLL3Pvs4V2Xf0TZcYAFwsuumK+MnQQ2R62xICIkQAAAALWrx89R8/wBTSWj1U877feERIgAAfza4ck17qQstr/Rvmx/eAD6ra3vDkxjYw6PktKT0LJgAAAACx328J/YfM/dK9jvL/QM31NgAAej+XrDlnPdbrCle9mXHQAFwsuumK+MnQQ2R62xICIkQAAAALWrx89R8/wBTSWj1U877feERIgAAfze4cnSC63mzbd/RJmx5IAD6ra3vDkxjYw6PktKT0LJgAAAACx328J/YfM/dK9jvL/QM31NgAAej+Y/Dl6e32QGtu/osy4/IALhZddMV8Zegh8i1s8gIiRAAAAAtavH71Hz/AFJJaPVTzvt94REiAABjBZjOz9QAD6ra3vDkxjYw6PktKT0LJgAAAACx328KPYfM/VK9j/L/AEDNtTYAAAws/KjOqqAAFwsuumK+MvQQ+Ra2eQERIgAAAAeCJfRwsRuihZvcvP70h5IAAUKgBQFQPttr9Nl2M7GHR8lpSehZMAAAAAfiQE7Dmo9zUZ0v4brc409gAAUKgKAqBU++y79raxl6CHyLWzyAiJEAAAAADDM+PS0xGyUgJYAAW7JbccdwAAAA19vauv8AZwSJiJEAAAAAAaPk9G40rteN3QAKltvtuNlwAAAAin0cLtmM3ttx+4AAAAAAI7zUbbsmP1SoAGl5LS3RG7oAAAA/C6kmoCW/QAAAAAAHkjPPRXpStKgAackdTccdtgAAAeK0vuHLv2HkQAAABhGzh0dJ6YAAAAEZpqMkzCyYAAAAob/id7KsOQAAAAAAAAAAQn6OImxzkuAAAAAAAAABDfoYeU0BMXeipQAqUBUoAVKAAAFTAdvBq7b1pMxEgAAAAAAAAAAITdHETZ5yXAAAAAGE7OGDfWc7aL7AAqAtOXHc8WT3QFQUBVsXS2Zxcn0X1AHwVpBfredwXb1wAFA/G6nyXW3Cy4VpUAKr3ivnPyXR5fgygfgQ46eC05JaKgKgoCq0Zcd3w5AqAA+i2sw+andzRu6BCPrOd519vyg8goAAAVKAFShSrpb5/wBntPR2t3RUh+1GjpPS5Aeoefih5ABUApUK0AUAJp8l0knYKX3VFb95x32W+3hP7B5p6B4ABUoCpQAAAkRCSs3+R6bcUbu5Vr5YP9ZzvO/t+U29Gb/UTz7tLxivoAAAVKAFSgMgw5bBmxRxm4uYnNTeiZPR5C+ocBdcd/Wrzbus609kAVAKAqAUALvjvrSsPulg5wcrP2O+3hP7D5n+lK9JuE6+SUDL1AKlAVKAAAH323ffjvh908FKXnZiKnRwnO/t+UlTzs30b4brQAAAAAABkWDJ6pWI3SQkwebm9EyejyF9Q4DOtPa7F+Yd9QAAAAAAAvOK/wCuy6IXSQkxebm7Hfbwn9h8z90r2O8v9AzfU2AAAAAAALhZddMV8ZOghsj1tjT8rHc7+35SVPOzfRvhutAAAFto1+bSqAAGRYMnqlYjdJCTB5ub0TJ6PIX1DgM609rsX5h31AAAD8zVVK7QrT6QAC84r/rsuiF0kJMXm5ux328J/YfM/dK9jvL/AEDN9TYAAAqaxozQvNQAFwsuumK+MnQQ2R62xp+Vjud/b8pKnnZvo3w3WgAARypXj/jvnDdbs+qbt1oAGRYMnqlYjdJCTB5ub0TJ6PIX1DgM609rsX5h31AAAYufz94snQa630dJL7QALziv+uy6IXSQkxebm7Hfbwn9h8z90r2O8v8AQM31NgAAVOAGLJL+63G6V6y5LPIALhZddMV8ZOghsj1tjT8rHc7+35SVPOzfRvhutAAA4WY7+td9u6K0AAAyLBk9UrEbpISYPNzeiZPR5C+ocBnWntdi/MO+oAADnxbXE6V6Z32gAAXnFf8AXZdELpISYvNzdjvt4T+w+Z+6V7HeX+gZvqbAAA1/bXiNZd35y2AAAXCy66Yr4ydBDZHrbGn5WO539vykqedm+jfDdaAABzesu1DSvUy+3VpIWtAAMiwZPVKxG6SEmDzc3omT0eQvqHAZ1p7XYvzDvqAAA0PSvF7Hd3qyW6Uok1dQAC84r/rsuiF0kJMXm5ux328J/YfM/dK9jvL/AEDN9TYAAHxn81GHJ/Q/ls0/RKW6lAAXCy66Yr4y9BD5FrZ9Pysdzv7flJVc7N9GuG60AACpCa2uhKVn7dbtaoADIsGT1SsRukhJg83N6Jk9HkL6hwGdae12L8w76gAABG+2sMaVmZWkkrqAAXnFf9dl0QukhJi83N2O+3hP7D5n7pXsf5f6Bm2psAAAaqo5+23SBrSa11AALhZddMV8Zegh8i1s/wA99nLn0Li5Gwcv0X4frBQAAAqUAKlD9aVv2DIIjdJCTB5ubwnYw8hvTuC9Ur2D8y72gAKgFAVAKA9F7w5P2trELpISYvNzfwVchvTuD1HJaHYPzHvs31NigBUoCpQAAFS7Yr/ssujL0EPkWtn35ESNCJXSQktObmwAAAAAAKFARF6WEmFzU35PzIjdJCy65uaoAAAAAAAeQRA6SEmPzc2PwNBy0fn2tnz/AEtkAAAAAADyCMXQw2Uamzv2JkBHeajMfyWfVZUCgVKVAAAAB8WSmaa+Xe8RIgarkNTT0lpXfBeAABRUVUAAoFfyrTxktlPz8uBaMlkTuihso1c/qgAACgVFVAAPzqsWzil1zc1//9oACAECAAEFAfXI0jyiI5I0zGYKlMFSmCpTBUpgqUwVKYKlMFSmCpTBUpgqUwVKYKlMFSmCpTBUpGkUFrIsN6G/9Rp7maHojjpeYJeYJeYJeYJeYJeYJeYJeYJeYJeYJeYJeYJeYJeYJeYIuQ8aNg8Vo+48499Pp73i+O2DAeea83RaM1PtsG/l15rrVreOi+n097yb9LoaOjdH/wAsYNYN+zBpaM0t/I/+r+n097yb9Lpa6WDGFhYNYWFhYWFhu6G/kf8A1f0+nveTfpfQN/I/+r+n097yb9L6Bv5H/wBX9Pp73k46XYsbrt/I/wDq/p9Pe8nHS7B4aM1m/kf/AFf09AsamiOzhK1kxUQ4qPeYbzDeYbzDeYbzDeYbzNH2GNsN5hvMN5hvMN5ml/8AV/UYDLZbrO/luzi/aV/UUS15O88yXPnCQHCQHCQHCQHCQEBIiivvwELr3CQHCQHCQHCQHCQHCQHCQHCQHCQDrJc4LVryh76xKOpU87/gco6lTzvqMFFBbA4CI4CI4CI4KI4KI4KI4KI4KI4CI4CI4CI4CI4CI4CI4CI4CI4CIStRwIkRxE+9wURwURwURwURwERwERwERwURwERwERwERwURwERwERwUQtSOQWfQX3mYf9CXvMbB9RLJS5EcwxKYYlMMSmGJTDEphiUwxKYYlMMSmGJTDEphiUwxKYYlMMSmGJTDEpNJU7Bd9AkksJ13DEphiUwxKYYlMMSmGJTDEphiUwxKYYlMMSmGJTDEphiUwxKYYlGytK0mstYn9BLulHnmOsxFMYklMSSmJJTEkpiSUxJKYklMSSmJJTEkpiSUxJKYklMSSixUmjQrgnIkqf3Nq57m6IkR1xmIpTEkpiSUxJKYklMSSmJJTEkpiSUxJKYklMSSmJJTEkpiSUmEZMph3CAKZdEgu7WXdKTmM89H2734EEd6FHmrjHVW0c9zdExjPRFG3e0SN9rYvAd2su6Um3Vbd78Cfmzjq9o57m6FfP272iRdXtZd0pNuq1943hjdZ78Cfmzjq9o57m6FfP1943i3We0SLq9rLulJt1Wv/mw/zqvfgT82c9XtHPc3Qr5+v/lrB3We0SLq9rLulJt1Wv8A53T8az34E/NnPV7Rz3N0K+fr/wCd0Y2zWe0SLq9rLulJt1Wv/nePzrPfgT82c9XtHPc3Qr5+v/nePy3Ve0SLq9rLelJt1W3e/An5s46vaOe5uhXz9u9okXV7WXTbgOw50nfem73/AK943jeN43jeN43jeN43jeN43jeGvaE/NnPV7VJPWOup5tAjRFj3/fvG8bxvG8bxvG8bxvG8bxvG8bw1tuiRdXtoDzHYk6htYp1v/nZIoT0SPNnmPK9tLHmOqpjCecUazd