Владимир Георгиевич Брюков

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews


Скачать книгу

помощью оцененного таким образом уравнения регрессии можно предсказать, как в среднем изменится признак Y в результате роста факторов X1, X2…Xt (или одного фактора X). В зависимости от того, какая математическая функция используется для прогнозирования результирующей переменной Y, различают линейную и нелинейную регрессию. При этом в основе линейной регрессии лежит уравнение линейного тренда, а в основе нелинейной регрессии – целое семейство уравнений нелинейных трендов (полиномиальный второй, третьей и прочих степеней, степенной, экспоненциальный, логарифмический и другие). В случае если результативный признак Y зависит от одного фактора X, то такое уравнение регрессии называется парным, а если Y зависит от нескольких факторов X1, X2…Xt – то уравнением множественной регрессии.

      Практически в любом учебнике по общей теории статистики и по эконометрике можно более подробно познакомиться со спецификой уравнений регрессии. (См., например, учебник «Эконометрика» под ред. И.И. Елисеевой. – 2-е изд., пер. и доп. – М,: Финансы и статистика, 2006, стр. 43-132).

      Существуют формулы, по которым можно самостоятельно найти параметры, как уравнения линейной регрессии, так и различных видов уравнений нелинейной регрессии. Однако с внедрением в широкую практику компьютеров и соответствующих компьютерных программ уже нет необходимости оценивать параметры уравнения регрессии вручную, тем более что этот процесс довольно трудоемкий.

      2.2. Решение уравнения регрессии в Excel с учетом фактора времени. Интерпретация и оценка значимости полученных параметров

      Поэтому далее остановимся на изучении алгоритма решения уравнений регрессии с применением соответствующих вычислительных программ. При этом работу с уравнениями регрессии в компьютерных программах можно разделить на три этапа.

      На первом, подготовительном этапе необходимо определиться с набором факторов, которые необходимо включить в уравнение регрессии, а также с его аналитической формой, что в ряде случаев требует предварительной обработки данных. Например, в случае выбора степенного уравнения регрессии вместо исходных данных нужно взять их логарифмы.

      Второй этап состоит из собственно решения уравнения регрессии и нахождения его параметров.

      На третьем этапе проводится оценка и тестирования общего качества уравнения регрессии, проверка статистической значимости каждого из коэффициентов регрессии, определяются их доверительные интервалы, а также принимается окончательное решение об адекватности или неадекватности полученного уравнения регрессии.

      Как известно, одним из наиболее распространенных способов определения тренда в динамике курса валюты является построение его зависимости от фактора времени T. Так, если в качестве зависимой переменной Y мы возьмем ежемесячный курс доллара, а в качестве независимой переменной T – время (в данном случае порядковые номера месяцев, начиная с июня 1992 г.=1), то у нас получится следующее уравнение парной линейной регрессии:

      Y расч. =a + bT (2.2);

      где a – свободный член уравнения регрессии; b – линейной коэффициент регрессии, показывающий, как изменение величины независимой переменной (фактора) T