Spencer Herbert

The Principles of Biology, Volume 1 (of 2)


Скачать книгу

It comprehends the determination of functions by structures, and the determination of structures by functions.

      As displayed in individual organisms, the effects of structures on functions are to be studied, not only in the broad fact that the general kind of life an organism leads is necessitated by the main characters of its organization, but in the more special and less conspicuous fact, that between members of the same species, minor differences of structure lead to minor differences of power to perform certain actions, and of tendencies to perform such actions. Conversely, under the reactions of functions on structures in individual organisms, come the facts showing that functions, when fulfilled to their normal extents, maintain integrity of structure in their respective organs; and that within certain limits increases of functions are followed by such structural changes in their respective organs, as enable them to discharge better their extra functions.

      Inquiry into the influence of structure on function as seen in successions of organisms, introduces us to such phenomena as Mr. Darwin's Origin of Species deals with. In this category come all proofs of the general truth, that when an individual is enabled by a certain structural peculiarity to perform better than others of its species some advantageous action; and when it bequeaths more or less of its structural peculiarity to descendants, among whom those which have it most markedly are best able to thrive and propagate; there arises a visibly modified type of structure, having a more or less distinct function. In the correlative class of facts (by some asserted and by others denied), which come under the category of reactions of function on structure as exhibited in successions of organisms, are to be placed all those modifications of structure which arise in races, when changes of conditions entail changes in the balance of their functions – when altered function externally necessitated, produces altered structure, and continues doing this through successive generations.

      § 41. The fourth great division of Biology, comprehending the phenomena of Genesis, may be conveniently separated into three subdivisions.

      Under the first, comes a description of all the special modes whereby the multiplication of organisms is carried on; which modes range themselves under the two chief heads of sexual and asexual. An account of Sexual Multiplication includes the various processes by which germs and ova are fertilized, and by which, after fertilization, they are furnished with the materials, and maintained in the conditions, needful for their development. An account of Asexual Multiplication includes the various processes by which, from the same fertilized germ or ovum, there are produced many organisms partially or totally independent of one another.

      The second of these subdivisions deals with the phenomena of Genesis in the abstract. It takes for its subject-matter such general questions as – What is the end subserved by the union of sperm-cell and germ-cell? Why cannot all multiplication be carried on after the asexual method? What are the laws of hereditary transmission? What are the causes of variation?

      The third subdivision is devoted to still more abstract aspects of the subject. Recognizing the general facts of multiplication, without reference to their modes or immediate causes, it concerns itself simply with the different rates of multiplication in different kinds of organisms and different individuals of the same kind. Generalizing the numerous contrasts and variations of fertility, it seeks a rationale of them in their relations to other organic phenomena.

      § 42. Such appears to be the natural arrangement of divisions and subdivisions which Biology presents. It is, however, a classification of the parts of the science when fully developed; rather than a classification of them as they now stand. Some of the subdivisions above named have no recognized existence, and some of the others are in quite rudimentary states. It is impossible now to fill in, even in the roughest way, more than a part of the outlines here sketched.

      Our course of inquiry being thus in great measure determined by the present state of knowledge, we are compelled to follow an order widely different from this ideal one. It will be necessary first to give an account of those empirical generalizations which naturalists and physiologists have established: appending to those which admit of it, such deductive interpretations as First Principles furnishes us with. Having done this, we shall be the better prepared for dealing with the leading truths of Biology in connexion with the doctrine of Evolution.

      PART II.

      THE INDUCTIONS OF BIOLOGY

      CHAPTER I.

      GROWTH

      § 43. Perhaps the widest and most familiar induction of Biology, is that organisms grow. While, however, this is a characteristic so uniformly and markedly displayed by plants and animals, as to be carelessly thought peculiar to them, it is really not so. Under appropriate conditions, increase of size takes place in inorganic aggregates, as well as in organic aggregates. Crystals grow; and often far more rapidly than living bodies. Where the requisite materials are supplied in the requisite forms, growth may be witnessed in non-crystalline masses: instance the fungous-like accumulation of carbon that takes place on the wick of an unsnuffed candle. On an immensely larger scale, we have growth in geologic formations: the slow accumulation of deposited sediment into a stratum, is not distinguishable from growth in its widest acceptation. And if we go back to the genesis of celestial bodies, assuming them to have arisen by Evolution, these, too, must have gradually passed into their concrete shapes through processes of growth. Growth is, indeed, as being an integration of matter, the primary trait of Evolution; and if Evolution of one kind or other is universal, growth is universal – universal, that is, in the sense that all aggregates display it in some way at some period.

      The essential community of nature between organic growth and inorganic growth, is, however, most clearly seen on observing that they both result in the same way. The segregation of different kinds of detritus from each other, as well as from the water carrying them, and their aggregation into distinct strata, is but an instance of a universal tendency towards the union of like units and the parting of unlike units (First Principles, § 163). The deposit of a crystal from a solution is a differentiation of the previously mixed molecules; and an integration of one class of molecules into a solid body, and the other class into a liquid solvent. Is not the growth of an organism an essentially similar process? Around a plant there exist certain elements like the elements which form its substance; and its increase of size is effected by continually integrating these surrounding like elements with itself. Nor does the animal fundamentally differ in this respect from the plant or the crystal. Its food is a portion of the environing matter that contains some compound atoms like some of the compound atoms constituting its tissues; and either through simple imbibition or through digestion, the animal eventually integrates with itself, units like those of which it is built up, and leaves behind the unlike units. To prevent misconception, it may be well to point out that growth, as here defined, must be distinguished from certain apparent and real augmentations of bulk which simulate it. Thus, the long, white potato-shoots thrown out in the dark, are produced at the expense of the substances which the tuber contains: they illustrate not the accumulation of organic matter, but simply its re-composition and re-arrangement. Certain animal-embryos, again, during their early stages, increase considerably in size without assimilating any solids from the environment; and they do this by absorbing the surrounding water. Even in the highest organisms, as in children, there appears sometimes to occur a rapid gain in dimensions which does not truly measure the added quantity of organic matter; but is in part due to changes analogous to those just named. Alterations of this kind must not be confounded with that growth, properly so called, of which we have here to treat.

      The next general fact to be noted respecting organic growth, is, that it has limits. Here there appears to be a distinction between organic and inorganic growth; but this distinction is by no means definite. Though that aggregation of inanimate matter which simple attraction produces, may go on without end; yet there appears to be an end to that more definite kind of aggregation which results from polar attraction. Different elements and compounds habitually form crystals more or less unlike in their sizes; and each seems to have a size that is not usually exceeded without a tendency arising to form new crystals rather than to increase the old. On looking at the organic kingdom as a whole, we see that the limits between which growth ranges are very wide apart. At the one extreme we have monads so minute as to be rendered but imperfectly visible by microscopes of the highest power; and at the other extreme