это законы особого рода, законы, выражаемые так называемыми дифференциальными уравнениями. Такие уравнения задают скорость, с которой те или иные величины изменяются с течением времени. Скорость – это быстрота изменения положения тела; ускорение – это быстрота изменения скорости. Знание скорости, с которой в настоящее время изменяется та или иная величина, позволяет вам спроецировать эту величину в будущее. Если машина едет со скоростью 10 метров в секунду, то через секунду она сдвинется на 10 метров. Однако для того, чтобы считать таким способом, нужно, чтобы скорость была постоянной. Если же машина ускоряется, то за секунду она отъедет от вас более чем на 10 метров. Чтобы обойти эту проблему, в дифференциальных уравнениях указывается мгновенная быстрота изменения. По существу, они работают с очень короткими промежутками времени, так что быстроту изменения на этом промежутке можно считать постоянной. На самом деле математикам потребовалось несколько столетий, чтобы довести эту идею до полной логической строгости, поскольку никакой конечный интервал времени нельзя считать мгновенным, если он не равен нулю, а за нулевой интервал времени ничто не меняется.
Компьютеры произвели в этом деле настоящую методологическую революцию. Вместо расчета приближенных формул движения, а затем подстановки чисел в эти формулы теперь можно с самого начала работать с числами. Предположим, вы хотите предсказать, где некоторая система тел – скажем, спутники Юпитера – будет находиться через сто лет. Начните с первоначальных позиций и параметров движения Юпитера, его спутников и всех остальных тел, которые могут иметь значение, – в данном случае это Солнце и Сатурн. Затем, постепенно, один крошечный временной шаг за другим, вычисляйте, как изменяются числа, описывающие все задействованные тела. Повторяйте это действие до тех пор, пока не дойдете до временной отметки сто лет. Стоп. Человек, проводящий вычисления при помощи карандаша и бумаги, не смог бы воспользоваться этим методом для расчета сколько-нибудь реалистичной задачи. На это потребовалось бы несколько жизней. Однако при наличии быстрого компьютера метод становится вполне реализуемым, а современные компьютеры очень и очень быстры.
Откровенно говоря, все не настолько просто. Притом что ошибка на каждом шаге (вызванная тем, что мы считаем быстроту изменений постоянной, хотя на самом деле она успевает немного измениться) очень мала, шагов вам придется сделать ужасно много. При многократных операциях с маленькой ошибкой на каждом шагу результирующая ошибка не обязательно получится маленькой, но тщательно продуманные методы позволяют удержать ошибки под контролем. Именно на это нацелена целая область математики, известная как численный анализ. Удобно называть такие методы «моделированием», что отражает принципиальную роль в них компьютера. Важно понимать, что невозможно решить задачу, просто «засунув ее в компьютер». Кто-то должен запрограммировать машину, задать ей математические правила, которые