инвариантность включает в себя другие преобразования, состоящие из гораздо менее знакомых свойств, чем скорость, но обращающихся к той же самой идее. Мы ограничиваем законы, требуя, чтобы они действовали одинаково в самых различных ситуациях.
Третий принцип – квантовая механика. Это скорее не конкретная гипотеза, а широкая структура. В этом аспекте она напоминает классическую (ньютоновскую) механику, которая объясняет, как в результате воздействия определенных сил происходит движение, но не говорит, что это за силы. При более подробном рассмотрении неоднозначность квантовой теории оказывается еще значительнее. (Для специалистов: здесь я намекаю на альтернативные варианты выбора динамических переменных и на принцип неопределенности.) Таким образом, до появления базовых теорий применение квантовой механики к конкретным физическим задачам всегда подразумевало необходимость до некоторой степени строить догадки. Но базовые теории настаивают на уникальном выборе, о чем я буду говорить в следующей главе. Хотя это и не очень приветствуется, полагаю, будет справедливым сказать: что такое квантовая механика, мы понимаем лишь в контексте наших базовых теорий.
Получается, сформулировать уравнения, согласующиеся как с принципом относительности, так и с принципами квантовой механики, довольно сложно. Это смогли обеспечить лишь релятивистские квантовые теории поля, содержащие много основных величин, которые либо плохо определены, либо – формально – бесконечны. При моделировании физического мира могут быть использованы только тщательно подобранные комбинации, в которых бесконечности взаимно уничтожаются. Чтобы их оказалось достаточно, структурой квантовой механики нужно пользоваться очень специфичным образом. Неопределенность при этом полностью устраняется. Поиск теорий, реализующих наши основные принципы, затрудняется тем, что они находятся на грани непротиворечивости. Зато эти теории основательны. Это приводит нас к очень специфическим уравнениям и процедурам, стойкость которых к изменениям обеспечивает их долговечность.
Новые принципы
Два следствия основополагающих законов настолько фундаментальны и важны, что заслуживают упоминания даже в этом кратком обзоре.
Первичными объектами в природе являются заполняющие пространство и постоянные (то есть заполняющие время) поля. Частицы – такие, как электроны – являются возбуждениями соответствующего поля. Таким образом, все электроны обладают одинаковыми свойствами, где бы и когда бы они ни встречались, потому что каждый из них является возбуждением одного и того же поля. Точное сходство всех электронов (и других элементарных частиц) имеет огромное значение. В ходе промышленной революции XIX века важнейшим шагом вперед стала разработка взаимозаменяемых деталей: это обеспечило возможность массового производства, сборки и ремонта. Подобным же образом на изобилие в природе взаимозаменяемых объектов